srctree

Robin Voetter parent 3cb987f5 27b91288 d2be725e
Merge pull request #19490 from Snektron/spirv-dedup

spirv: deduplication pass

inlinesplit
src/codegen/spirv.zig added: 574, removed: 9, total 565
@@ -2332,6 +2332,9 @@ const DeclGen = struct {
 
.mul_add => try self.airMulAdd(inst),
 
.ctz => try self.airClzCtz(inst, .ctz),
.clz => try self.airClzCtz(inst, .clz),
 
.splat => try self.airSplat(inst),
.reduce, .reduce_optimized => try self.airReduce(inst),
.shuffle => try self.airShuffle(inst),
@@ -3029,6 +3032,83 @@ const DeclGen = struct {
return try wip.finalize();
}
 
fn airClzCtz(self: *DeclGen, inst: Air.Inst.Index, op: enum { clz, ctz }) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
 
const mod = self.module;
const target = self.getTarget();
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const result_ty = self.typeOfIndex(inst);
const operand_ty = self.typeOf(ty_op.operand);
const operand = try self.resolve(ty_op.operand);
 
const info = self.arithmeticTypeInfo(operand_ty);
switch (info.class) {
.composite_integer => unreachable, // TODO
.integer, .strange_integer => {},
.float, .bool => unreachable,
}
 
var wip = try self.elementWise(result_ty, false);
defer wip.deinit();
 
const elem_ty = if (wip.is_array) operand_ty.scalarType(mod) else operand_ty;
const elem_ty_ref = try self.resolveType(elem_ty, .direct);
const elem_ty_id = self.typeId(elem_ty_ref);
 
for (wip.results, 0..) |*result_id, i| {
const elem = try wip.elementAt(operand_ty, operand, i);
 
switch (target.os.tag) {
.opencl => {
const set = try self.spv.importInstructionSet(.@"OpenCL.std");
const ext_inst: u32 = switch (op) {
.clz => 151, // clz
.ctz => 152, // ctz
};
 
// Note: result of OpenCL ctz/clz returns operand_ty, and we want result_ty.
// result_ty is always large enough to hold the result, so we might have to down
// cast it.
const tmp = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpExtInst, .{
.id_result_type = elem_ty_id,
.id_result = tmp,
.set = set,
.instruction = .{ .inst = ext_inst },
.id_ref_4 = &.{elem},
});
 
if (wip.ty_id == elem_ty_id) {
result_id.* = tmp;
continue;
}
 
result_id.* = self.spv.allocId();
if (result_ty.scalarType(mod).isSignedInt(mod)) {
assert(elem_ty.scalarType(mod).isSignedInt(mod));
try self.func.body.emit(self.spv.gpa, .OpSConvert, .{
.id_result_type = wip.ty_id,
.id_result = result_id.*,
.signed_value = tmp,
});
} else {
assert(elem_ty.scalarType(mod).isUnsignedInt(mod));
try self.func.body.emit(self.spv.gpa, .OpUConvert, .{
.id_result_type = wip.ty_id,
.id_result = result_id.*,
.unsigned_value = tmp,
});
}
},
.vulkan => unreachable, // TODO
else => unreachable,
}
}
 
return try wip.finalize();
}
 
fn airSplat(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
const operand_id = try self.resolve(ty_op.operand);
 
src/link/SpirV.zig added: 574, removed: 9, total 565
@@ -261,6 +261,7 @@ fn linkModule(self: *SpirV, a: Allocator, module: []Word) ![]Word {
 
const lower_invocation_globals = @import("SpirV/lower_invocation_globals.zig");
const prune_unused = @import("SpirV/prune_unused.zig");
const dedup = @import("SpirV/deduplicate.zig");
 
var parser = try BinaryModule.Parser.init(a);
defer parser.deinit();
@@ -268,6 +269,7 @@ fn linkModule(self: *SpirV, a: Allocator, module: []Word) ![]Word {
 
try lower_invocation_globals.run(&parser, &binary);
try prune_unused.run(&parser, &binary);
try dedup.run(&parser, &binary);
 
return binary.finalize(a);
}
 
src/link/SpirV/BinaryModule.zig added: 574, removed: 9, total 565
@@ -94,6 +94,8 @@ pub const ParseError = error{
DuplicateId,
/// Some ID did not resolve.
InvalidId,
/// This opcode or instruction is not supported yet.
UnsupportedOperation,
/// Parser ran out of memory.
OutOfMemory,
};
 
filename was Deleted added: 574, removed: 9, total 565
@@ -0,0 +1,482 @@
const std = @import("std");
const Allocator = std.mem.Allocator;
const log = std.log.scoped(.spirv_link);
const assert = std.debug.assert;
 
const BinaryModule = @import("BinaryModule.zig");
const Section = @import("../../codegen/spirv/Section.zig");
const spec = @import("../../codegen/spirv/spec.zig");
const Opcode = spec.Opcode;
const ResultId = spec.IdResult;
const Word = spec.Word;
 
fn canDeduplicate(opcode: Opcode) bool {
return switch (opcode) {
.OpTypeForwardPointer => false, // Don't need to handle these
.OpGroupDecorate, .OpGroupMemberDecorate => {
// These are deprecated, so don't bother supporting them for now.
return false;
},
// Debug decoration-style instructions
.OpName, .OpMemberName => true,
else => switch (opcode.class()) {
.TypeDeclaration,
.ConstantCreation,
.Annotation,
=> true,
else => false,
},
};
}
 
const ModuleInfo = struct {
/// This models a type, decoration or constant instruction
/// and its dependencies.
const Entity = struct {
/// The type that this entity represents. This is just
/// the instruction opcode.
kind: Opcode,
/// The offset of this entity's operands, in
/// `binary.instructions`.
first_operand: u32,
/// The number of operands in this entity
num_operands: u16,
/// The (first_operand-relative) offset of the result-id,
/// or the entity that is affected by this entity if this entity
/// is a decoration.
result_id_index: u16,
/// The first decoration in `self.decorations`.
first_decoration: u32,
};
 
/// Maps result-id to Entity's
entities: std.AutoArrayHashMapUnmanaged(ResultId, Entity),
/// A bit set that keeps track of which operands are result-ids.
/// Note: This also includes any result-id!
/// Because we need these values when recoding the module anyway,
/// it contains the status of ALL operands in the module.
operand_is_id: std.DynamicBitSetUnmanaged,
/// Store of decorations for each entity.
decorations: []const Entity,
 
pub fn parse(
arena: Allocator,
parser: *BinaryModule.Parser,
binary: BinaryModule,
) !ModuleInfo {
var entities = std.AutoArrayHashMap(ResultId, Entity).init(arena);
var id_offsets = std.ArrayList(u16).init(arena);
var operand_is_id = try std.DynamicBitSetUnmanaged.initEmpty(arena, binary.instructions.len);
var decorations = std.MultiArrayList(struct { target_id: ResultId, entity: Entity }){};
 
var it = binary.iterateInstructions();
while (it.next()) |inst| {
id_offsets.items.len = 0;
try parser.parseInstructionResultIds(binary, inst, &id_offsets);
 
const first_operand_offset: u32 = @intCast(inst.offset + 1);
for (id_offsets.items) |offset| {
operand_is_id.set(first_operand_offset + offset);
}
 
if (!canDeduplicate(inst.opcode)) continue;
 
const result_id_index: u16 = switch (inst.opcode.class()) {
.TypeDeclaration, .Annotation, .Debug => 0,
.ConstantCreation => 1,
else => unreachable,
};
 
const result_id: ResultId = @enumFromInt(inst.operands[id_offsets.items[result_id_index]]);
const entity = Entity{
.kind = inst.opcode,
.first_operand = first_operand_offset,
.num_operands = @intCast(inst.operands.len),
.result_id_index = result_id_index,
.first_decoration = undefined, // Filled in later
};
 
switch (inst.opcode.class()) {
.Annotation, .Debug => {
try decorations.append(arena, .{
.target_id = result_id,
.entity = entity,
});
},
.TypeDeclaration, .ConstantCreation => {
const entry = try entities.getOrPut(result_id);
if (entry.found_existing) {
log.err("type or constant {} has duplicate definition", .{result_id});
return error.DuplicateId;
}
entry.value_ptr.* = entity;
},
else => unreachable,
}
}
 
// Sort decorations by the index of the result-id in `entities.
// This ensures not only that the decorations of a particular reuslt-id
// are continuous, but the subsequences also appear in the same order as in `entities`.
 
const SortContext = struct {
entities: std.AutoArrayHashMapUnmanaged(ResultId, Entity),
ids: []const ResultId,
 
pub fn lessThan(ctx: @This(), a_index: usize, b_index: usize) bool {
// If any index is not in the entities set, its because its not a
// deduplicatable result-id. Those should be considered largest and
// float to the end.
const entity_index_a = ctx.entities.getIndex(ctx.ids[a_index]) orelse return false;
const entity_index_b = ctx.entities.getIndex(ctx.ids[b_index]) orelse return true;
 
return entity_index_a < entity_index_b;
}
};
 
decorations.sort(SortContext{
.entities = entities.unmanaged,
.ids = decorations.items(.target_id),
});
 
// Now go through the decorations and add the offsets to the entities list.
var decoration_i: u32 = 0;
const target_ids = decorations.items(.target_id);
for (entities.keys(), entities.values()) |id, *entity| {
entity.first_decoration = decoration_i;
 
// Scan ahead to the next decoration
while (decoration_i < target_ids.len and target_ids[decoration_i] == id) {
decoration_i += 1;
}
}
 
return ModuleInfo{
.entities = entities.unmanaged,
.operand_is_id = operand_is_id,
// There may be unrelated decorations at the end, so make sure to
// slice those off.
.decorations = decorations.items(.entity)[0..decoration_i],
};
}
 
fn entityDecorationsByIndex(self: ModuleInfo, index: usize) []const Entity {
const values = self.entities.values();
const first_decoration = values[index].first_decoration;
if (index == values.len - 1) {
return self.decorations[first_decoration..];
} else {
const next_first_decoration = values[index + 1].first_decoration;
return self.decorations[first_decoration..next_first_decoration];
}
}
};
 
const EntityContext = struct {
a: Allocator,
ptr_map_a: std.AutoArrayHashMapUnmanaged(ResultId, void) = .{},
ptr_map_b: std.AutoArrayHashMapUnmanaged(ResultId, void) = .{},
info: *const ModuleInfo,
binary: *const BinaryModule,
 
fn deinit(self: *EntityContext) void {
self.ptr_map_a.deinit(self.a);
self.ptr_map_b.deinit(self.a);
 
self.* = undefined;
}
 
fn equalizeMapCapacity(self: *EntityContext) !void {
const cap = @max(self.ptr_map_a.capacity(), self.ptr_map_b.capacity());
try self.ptr_map_a.ensureTotalCapacity(self.a, cap);
try self.ptr_map_b.ensureTotalCapacity(self.a, cap);
}
 
fn hash(self: *EntityContext, id: ResultId) !u64 {
var hasher = std.hash.Wyhash.init(0);
self.ptr_map_a.clearRetainingCapacity();
try self.hashInner(&hasher, id);
return hasher.final();
}
 
fn hashInner(self: *EntityContext, hasher: *std.hash.Wyhash, id: ResultId) error{OutOfMemory}!void {
const index = self.info.entities.getIndex(id) orelse {
// Index unknown, the type or constant may depend on another result-id
// that couldn't be deduplicated and so it wasn't added to info.entities.
// In this case, just has the ID itself.
std.hash.autoHash(hasher, id);
return;
};
 
const entity = self.info.entities.values()[index];
 
if (entity.kind == .OpTypePointer) {
// This may be either a pointer that is forward-referenced in the future,
// or a forward reference to a pointer.
const entry = try self.ptr_map_a.getOrPut(self.a, id);
if (entry.found_existing) {
// Pointer already seen. Hash the index instead of recursing into its children.
std.hash.autoHash(hasher, entry.index);
return;
}
}
 
try self.hashEntity(hasher, entity);
 
// Process decorations.
const decorations = self.info.entityDecorationsByIndex(index);
for (decorations) |decoration| {
try self.hashEntity(hasher, decoration);
}
}
 
fn hashEntity(self: *EntityContext, hasher: *std.hash.Wyhash, entity: ModuleInfo.Entity) !void {
std.hash.autoHash(hasher, entity.kind);
// Process operands
const operands = self.binary.instructions[entity.first_operand..][0..entity.num_operands];
for (operands, 0..) |operand, i| {
if (i == entity.result_id_index) {
// Not relevant, skip...
continue;
} else if (self.info.operand_is_id.isSet(entity.first_operand + i)) {
// Operand is ID
try self.hashInner(hasher, @enumFromInt(operand));
} else {
// Operand is merely data
std.hash.autoHash(hasher, operand);
}
}
}
 
fn eql(self: *EntityContext, a: ResultId, b: ResultId) !bool {
self.ptr_map_a.clearRetainingCapacity();
self.ptr_map_b.clearRetainingCapacity();
 
return try self.eqlInner(a, b);
}
 
fn eqlInner(self: *EntityContext, id_a: ResultId, id_b: ResultId) error{OutOfMemory}!bool {
const maybe_index_a = self.info.entities.getIndex(id_a);
const maybe_index_b = self.info.entities.getIndex(id_b);
 
if (maybe_index_a == null and maybe_index_b == null) {
// Both indices unknown. In this case the type or constant
// may depend on another result-id that couldn't be deduplicated
// (so it wasn't added to info.entities). In this case, that particular
// result-id should be the same one.
return id_a == id_b;
}
 
const index_a = maybe_index_a orelse return false;
const index_b = maybe_index_b orelse return false;
 
const entity_a = self.info.entities.values()[index_a];
const entity_b = self.info.entities.values()[index_b];
 
if (entity_a.kind == .OpTypePointer) {
// May be a forward reference, or should be saved as a potential
// forward reference in the future. Whatever the case, it should
// be the same for both a and b.
const entry_a = try self.ptr_map_a.getOrPut(self.a, id_a);
const entry_b = try self.ptr_map_b.getOrPut(self.a, id_b);
 
if (entry_a.found_existing != entry_b.found_existing) return false;
if (entry_a.index != entry_b.index) return false;
 
if (entry_a.found_existing) {
// No need to recurse.
return true;
}
}
 
if (!try self.eqlEntities(entity_a, entity_b)) {
return false;
}
 
// Compare decorations.
const decorations_a = self.info.entityDecorationsByIndex(index_a);
const decorations_b = self.info.entityDecorationsByIndex(index_b);
if (decorations_a.len != decorations_b.len) {
return false;
}
 
for (decorations_a, decorations_b) |decoration_a, decoration_b| {
if (!try self.eqlEntities(decoration_a, decoration_b)) {
return false;
}
}
 
return true;
}
 
fn eqlEntities(self: *EntityContext, entity_a: ModuleInfo.Entity, entity_b: ModuleInfo.Entity) !bool {
if (entity_a.kind != entity_b.kind) {
return false;
} else if (entity_a.result_id_index != entity_a.result_id_index) {
return false;
}
 
const operands_a = self.binary.instructions[entity_a.first_operand..][0..entity_a.num_operands];
const operands_b = self.binary.instructions[entity_b.first_operand..][0..entity_b.num_operands];
 
// Note: returns false for operands that have explicit defaults in optional operands... oh well
if (operands_a.len != operands_b.len) {
return false;
}
 
for (operands_a, operands_b, 0..) |operand_a, operand_b, i| {
const a_is_id = self.info.operand_is_id.isSet(entity_a.first_operand + i);
const b_is_id = self.info.operand_is_id.isSet(entity_b.first_operand + i);
if (a_is_id != b_is_id) {
return false;
} else if (i == entity_a.result_id_index) {
// result-id for both...
continue;
} else if (a_is_id) {
// Both are IDs, so recurse.
if (!try self.eqlInner(@enumFromInt(operand_a), @enumFromInt(operand_b))) {
return false;
}
} else if (operand_a != operand_b) {
return false;
}
}
 
return true;
}
};
 
/// This struct is a wrapper around EntityContext that adapts it for
/// use in a hash map. Because EntityContext allocates, it cannot be
/// used. This wrapper simply assumes that the maps have been allocated
/// the max amount of memory they are going to use.
/// This is done by pre-hashing all keys.
const EntityHashContext = struct {
entity_context: *EntityContext,
 
pub fn hash(self: EntityHashContext, key: ResultId) u64 {
return self.entity_context.hash(key) catch unreachable;
}
 
pub fn eql(self: EntityHashContext, a: ResultId, b: ResultId) bool {
return self.entity_context.eql(a, b) catch unreachable;
}
};
 
pub fn run(parser: *BinaryModule.Parser, binary: *BinaryModule) !void {
var arena = std.heap.ArenaAllocator.init(parser.a);
defer arena.deinit();
const a = arena.allocator();
 
const info = try ModuleInfo.parse(a, parser, binary.*);
 
// Hash all keys once so that the maps can be allocated the right size.
var ctx = EntityContext{
.a = a,
.info = &info,
.binary = binary,
};
for (info.entities.keys()) |id| {
_ = try ctx.hash(id);
}
 
// hash only uses ptr_map_a, so allocate ptr_map_b too
try ctx.equalizeMapCapacity();
 
// Figure out which entities can be deduplicated.
var map = std.HashMap(ResultId, void, EntityHashContext, 80).initContext(a, .{
.entity_context = &ctx,
});
var replace = std.AutoArrayHashMap(ResultId, ResultId).init(a);
for (info.entities.keys()) |id| {
const entry = try map.getOrPut(id);
if (entry.found_existing) {
try replace.putNoClobber(id, entry.key_ptr.*);
}
}
 
// Now process the module, and replace instructions where needed.
var section = Section{};
var it = binary.iterateInstructions();
var new_functions_section: ?usize = null;
var new_operands = std.ArrayList(u32).init(a);
var emitted_ptrs = std.AutoHashMap(ResultId, void).init(a);
while (it.next()) |inst| {
// Result-id can only be the first or second operand
const inst_spec = parser.getInstSpec(inst.opcode).?;
 
const maybe_result_id_offset: ?u16 = for (0..2) |i| {
if (inst_spec.operands.len > i and inst_spec.operands[i].kind == .IdResult) {
break @intCast(i);
}
} else null;
 
if (maybe_result_id_offset) |offset| {
const result_id: ResultId = @enumFromInt(inst.operands[offset]);
if (replace.contains(result_id)) continue;
}
 
switch (inst.opcode) {
.OpFunction => if (new_functions_section == null) {
new_functions_section = section.instructions.items.len;
},
.OpTypeForwardPointer => continue, // We re-emit these where needed
else => {},
}
 
switch (inst.opcode.class()) {
.Annotation, .Debug => {
// For decoration-style instructions, only emit them
// if the target is not removed.
const target: ResultId = @enumFromInt(inst.operands[0]);
if (replace.contains(target)) continue;
},
else => {},
}
 
// Re-emit the instruction, but replace all the IDs.
 
new_operands.items.len = 0;
try new_operands.appendSlice(inst.operands);
 
for (new_operands.items, 0..) |*operand, i| {
const is_id = info.operand_is_id.isSet(inst.offset + 1 + i);
if (!is_id) continue;
 
if (replace.get(@enumFromInt(operand.*))) |new_id| {
operand.* = @intFromEnum(new_id);
}
 
if (maybe_result_id_offset == null or maybe_result_id_offset.? != i) {
const id: ResultId = @enumFromInt(operand.*);
const index = info.entities.getIndex(id) orelse continue;
const entity = info.entities.values()[index];
if (entity.kind == .OpTypePointer and !emitted_ptrs.contains(id)) {
// Grab the pointer's storage class from its operands in the original
// module.
const storage_class: spec.StorageClass = @enumFromInt(binary.instructions[entity.first_operand + 1]);
try section.emit(a, .OpTypeForwardPointer, .{
.pointer_type = id,
.storage_class = storage_class,
});
try emitted_ptrs.put(id, {});
}
}
}
 
if (inst.opcode == .OpTypePointer) {
const result_id: ResultId = @enumFromInt(new_operands.items[maybe_result_id_offset.?]);
try emitted_ptrs.put(result_id, {});
}
 
try section.emitRawInstruction(a, inst.opcode, new_operands.items);
}
 
for (replace.keys()) |key| {
_ = binary.ext_inst_map.remove(key);
_ = binary.arith_type_width.remove(key);
}
 
binary.instructions = try parser.a.dupe(Word, section.toWords());
binary.sections.functions = new_functions_section orelse binary.instructions.len;
}
 
test/behavior/destructure.zig added: 574, removed: 9, total 565
@@ -23,6 +23,8 @@ test "simple destructure" {
}
 
test "destructure with comptime syntax" {
if (builtin.zig_backend == .stage2_spirv64) return error.SkipZigTest;
 
const S = struct {
fn doTheTest() !void {
{
 
test/behavior/math.zig added: 574, removed: 9, total 565
@@ -65,7 +65,6 @@ test "@clz" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_spirv64) return error.SkipZigTest;
 
try testClz();
try comptime testClz();
@@ -148,7 +147,6 @@ test "@ctz" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_spirv64) return error.SkipZigTest;
 
try testCtz();
try comptime testCtz();
@@ -1752,7 +1750,6 @@ test "@clz works on both vector and scalar inputs" {
if (builtin.zig_backend == .stage2_aarch64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_arm) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_sparc64) return error.SkipZigTest; // TODO
if (builtin.zig_backend == .stage2_spirv64) return error.SkipZigTest;
 
var x: u32 = 0x1;
_ = &x;