srctree

Veikka Tuominen parent 8d11ade6 b0bea725
remove std.event

inlinesplit
CMakeLists.txt added: 15, removed: 3975, total 0
@@ -233,9 +233,6 @@ set(ZIG_STAGE2_SOURCES
"${CMAKE_SOURCE_DIR}/lib/std/dwarf/OP.zig"
"${CMAKE_SOURCE_DIR}/lib/std/dwarf/TAG.zig"
"${CMAKE_SOURCE_DIR}/lib/std/elf.zig"
"${CMAKE_SOURCE_DIR}/lib/std/event.zig"
"${CMAKE_SOURCE_DIR}/lib/std/event/batch.zig"
"${CMAKE_SOURCE_DIR}/lib/std/event/loop.zig"
"${CMAKE_SOURCE_DIR}/lib/std/fifo.zig"
"${CMAKE_SOURCE_DIR}/lib/std/fmt.zig"
"${CMAKE_SOURCE_DIR}/lib/std/fmt/errol.zig"
 
ev/null added: 15, removed: 3975, total 0
@@ -1,23 +0,0 @@
pub const Channel = @import("event/channel.zig").Channel;
pub const Future = @import("event/future.zig").Future;
pub const Group = @import("event/group.zig").Group;
pub const Batch = @import("event/batch.zig").Batch;
pub const Lock = @import("event/lock.zig").Lock;
pub const Locked = @import("event/locked.zig").Locked;
pub const RwLock = @import("event/rwlock.zig").RwLock;
pub const RwLocked = @import("event/rwlocked.zig").RwLocked;
pub const Loop = @import("event/loop.zig").Loop;
pub const WaitGroup = @import("event/wait_group.zig").WaitGroup;
 
test {
_ = @import("event/channel.zig");
_ = @import("event/future.zig");
_ = @import("event/group.zig");
_ = @import("event/batch.zig");
_ = @import("event/lock.zig");
_ = @import("event/locked.zig");
_ = @import("event/rwlock.zig");
_ = @import("event/rwlocked.zig");
_ = @import("event/loop.zig");
_ = @import("event/wait_group.zig");
}
 
ev/null added: 15, removed: 3975, total 0
@@ -1,141 +0,0 @@
const std = @import("../std.zig");
const testing = std.testing;
 
/// Performs multiple async functions in parallel, without heap allocation.
/// Async function frames are managed externally to this abstraction, and
/// passed in via the `add` function. Once all the jobs are added, call `wait`.
/// This API is *not* thread-safe. The object must be accessed from one thread at
/// a time, however, it need not be the same thread.
pub fn Batch(
/// The return value for each job.
/// If a job slot was re-used due to maxed out concurrency, then its result
/// value will be overwritten. The values can be accessed with the `results` field.
comptime Result: type,
/// How many jobs to run in parallel.
comptime max_jobs: comptime_int,
/// Controls whether the `add` and `wait` functions will be async functions.
comptime async_behavior: enum {
/// Observe the value of `std.io.is_async` to decide whether `add`
/// and `wait` will be async functions. Asserts that the jobs do not suspend when
/// `std.options.io_mode == .blocking`. This is a generally safe assumption, and the
/// usual recommended option for this parameter.
auto_async,
 
/// Always uses the `nosuspend` keyword when using `await` on the jobs,
/// making `add` and `wait` non-async functions. Asserts that the jobs do not suspend.
never_async,
 
/// `add` and `wait` use regular `await` keyword, making them async functions.
always_async,
},
) type {
return struct {
jobs: [max_jobs]Job,
next_job_index: usize,
collected_result: CollectedResult,
 
const Job = struct {
frame: ?anyframe->Result,
result: Result,
};
 
const Self = @This();
 
const CollectedResult = switch (@typeInfo(Result)) {
.ErrorUnion => Result,
else => void,
};
 
const async_ok = switch (async_behavior) {
.auto_async => std.io.is_async,
.never_async => false,
.always_async => true,
};
 
pub fn init() Self {
return Self{
.jobs = [1]Job{
.{
.frame = null,
.result = undefined,
},
} ** max_jobs,
.next_job_index = 0,
.collected_result = {},
};
}
 
/// Add a frame to the Batch. If all jobs are in-flight, then this function
/// waits until one completes.
/// This function is *not* thread-safe. It must be called from one thread at
/// a time, however, it need not be the same thread.
/// TODO: "select" language feature to use the next available slot, rather than
/// awaiting the next index.
pub fn add(self: *Self, frame: anyframe->Result) void {
const job = &self.jobs[self.next_job_index];
self.next_job_index = (self.next_job_index + 1) % max_jobs;
if (job.frame) |existing| {
job.result = if (async_ok) await existing else nosuspend await existing;
if (CollectedResult != void) {
job.result catch |err| {
self.collected_result = err;
};
}
}
job.frame = frame;
}
 
/// Wait for all the jobs to complete.
/// Safe to call any number of times.
/// If `Result` is an error union, this function returns the last error that occurred, if any.
/// Unlike the `results` field, the return value of `wait` will report any error that occurred;
/// hitting max parallelism will not compromise the result.
/// This function is *not* thread-safe. It must be called from one thread at
/// a time, however, it need not be the same thread.
pub fn wait(self: *Self) CollectedResult {
for (self.jobs) |*job|
if (job.frame) |f| {
job.result = if (async_ok) await f else nosuspend await f;
if (CollectedResult != void) {
job.result catch |err| {
self.collected_result = err;
};
}
job.frame = null;
};
return self.collected_result;
}
};
}
 
test "std.event.Batch" {
if (true) return error.SkipZigTest;
var count: usize = 0;
var batch = Batch(void, 2, .auto_async).init();
batch.add(&async sleepALittle(&count));
batch.add(&async increaseByTen(&count));
batch.wait();
try testing.expect(count == 11);
 
var another = Batch(anyerror!void, 2, .auto_async).init();
another.add(&async somethingElse());
another.add(&async doSomethingThatFails());
try testing.expectError(error.ItBroke, another.wait());
}
 
fn sleepALittle(count: *usize) void {
std.time.sleep(1 * std.time.ns_per_ms);
_ = @atomicRmw(usize, count, .Add, 1, .SeqCst);
}
 
fn increaseByTen(count: *usize) void {
var i: usize = 0;
while (i < 10) : (i += 1) {
_ = @atomicRmw(usize, count, .Add, 1, .SeqCst);
}
}
 
fn doSomethingThatFails() anyerror!void {}
fn somethingElse() anyerror!void {
return error.ItBroke;
}
 
ev/null added: 15, removed: 3975, total 0
@@ -1,334 +0,0 @@
const std = @import("../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const testing = std.testing;
const Loop = std.event.Loop;
 
/// Many producer, many consumer, thread-safe, runtime configurable buffer size.
/// When buffer is empty, consumers suspend and are resumed by producers.
/// When buffer is full, producers suspend and are resumed by consumers.
pub fn Channel(comptime T: type) type {
return struct {
getters: std.atomic.Queue(GetNode),
or_null_queue: std.atomic.Queue(*std.atomic.Queue(GetNode).Node),
putters: std.atomic.Queue(PutNode),
get_count: usize,
put_count: usize,
dispatch_lock: bool,
need_dispatch: bool,
 
// simple fixed size ring buffer
buffer_nodes: []T,
buffer_index: usize,
buffer_len: usize,
 
const SelfChannel = @This();
const GetNode = struct {
tick_node: *Loop.NextTickNode,
data: Data,
 
const Data = union(enum) {
Normal: Normal,
OrNull: OrNull,
};
 
const Normal = struct {
ptr: *T,
};
 
const OrNull = struct {
ptr: *?T,
or_null: *std.atomic.Queue(*std.atomic.Queue(GetNode).Node).Node,
};
};
const PutNode = struct {
data: T,
tick_node: *Loop.NextTickNode,
};
 
const global_event_loop = Loop.instance orelse
@compileError("std.event.Channel currently only works with event-based I/O");
 
/// Call `deinit` to free resources when done.
/// `buffer` must live until `deinit` is called.
/// For a zero length buffer, use `[0]T{}`.
/// TODO https://github.com/ziglang/zig/issues/2765
pub fn init(self: *SelfChannel, buffer: []T) void {
// The ring buffer implementation only works with power of 2 buffer sizes
// because of relying on subtracting across zero. For example (0 -% 1) % 10 == 5
assert(buffer.len == 0 or @popCount(buffer.len) == 1);
 
self.* = SelfChannel{
.buffer_len = 0,
.buffer_nodes = buffer,
.buffer_index = 0,
.dispatch_lock = false,
.need_dispatch = false,
.getters = std.atomic.Queue(GetNode).init(),
.putters = std.atomic.Queue(PutNode).init(),
.or_null_queue = std.atomic.Queue(*std.atomic.Queue(GetNode).Node).init(),
.get_count = 0,
.put_count = 0,
};
}
 
/// Must be called when all calls to put and get have suspended and no more calls occur.
/// This can be omitted if caller can guarantee that the suspended putters and getters
/// do not need to be run to completion. Note that this may leave awaiters hanging.
pub fn deinit(self: *SelfChannel) void {
while (self.getters.get()) |get_node| {
resume get_node.data.tick_node.data;
}
while (self.putters.get()) |put_node| {
resume put_node.data.tick_node.data;
}
self.* = undefined;
}
 
/// puts a data item in the channel. The function returns when the value has been added to the
/// buffer, or in the case of a zero size buffer, when the item has been retrieved by a getter.
/// Or when the channel is destroyed.
pub fn put(self: *SelfChannel, data: T) void {
var my_tick_node = Loop.NextTickNode{ .data = @frame() };
var queue_node = std.atomic.Queue(PutNode).Node{
.data = PutNode{
.tick_node = &my_tick_node,
.data = data,
},
};
 
suspend {
self.putters.put(&queue_node);
_ = @atomicRmw(usize, &self.put_count, .Add, 1, .SeqCst);
 
self.dispatch();
}
}
 
/// await this function to get an item from the channel. If the buffer is empty, the frame will
/// complete when the next item is put in the channel.
pub fn get(self: *SelfChannel) callconv(.Async) T {
// TODO https://github.com/ziglang/zig/issues/2765
var result: T = undefined;
var my_tick_node = Loop.NextTickNode{ .data = @frame() };
var queue_node = std.atomic.Queue(GetNode).Node{
.data = GetNode{
.tick_node = &my_tick_node,
.data = GetNode.Data{
.Normal = GetNode.Normal{ .ptr = &result },
},
},
};
 
suspend {
self.getters.put(&queue_node);
_ = @atomicRmw(usize, &self.get_count, .Add, 1, .SeqCst);
 
self.dispatch();
}
return result;
}
 
//pub async fn select(comptime EnumUnion: type, channels: ...) EnumUnion {
// assert(@memberCount(EnumUnion) == channels.len); // enum union and channels mismatch
// assert(channels.len != 0); // enum unions cannot have 0 fields
// if (channels.len == 1) {
// const result = await (async channels[0].get() catch unreachable);
// return @unionInit(EnumUnion, @memberName(EnumUnion, 0), result);
// }
//}
 
/// Get an item from the channel. If the buffer is empty and there are no
/// puts waiting, this returns `null`.
pub fn getOrNull(self: *SelfChannel) ?T {
// TODO integrate this function with named return values
// so we can get rid of this extra result copy
var result: ?T = null;
var my_tick_node = Loop.NextTickNode{ .data = @frame() };
var or_null_node = std.atomic.Queue(*std.atomic.Queue(GetNode).Node).Node{ .data = undefined };
var queue_node = std.atomic.Queue(GetNode).Node{
.data = GetNode{
.tick_node = &my_tick_node,
.data = GetNode.Data{
.OrNull = GetNode.OrNull{
.ptr = &result,
.or_null = &or_null_node,
},
},
},
};
or_null_node.data = &queue_node;
 
suspend {
self.getters.put(&queue_node);
_ = @atomicRmw(usize, &self.get_count, .Add, 1, .SeqCst);
self.or_null_queue.put(&or_null_node);
 
self.dispatch();
}
return result;
}
 
fn dispatch(self: *SelfChannel) void {
// set the "need dispatch" flag
@atomicStore(bool, &self.need_dispatch, true, .SeqCst);
 
lock: while (true) {
// set the lock flag
if (@atomicRmw(bool, &self.dispatch_lock, .Xchg, true, .SeqCst)) return;
 
// clear the need_dispatch flag since we're about to do it
@atomicStore(bool, &self.need_dispatch, false, .SeqCst);
 
while (true) {
one_dispatch: {
// later we correct these extra subtractions
var get_count = @atomicRmw(usize, &self.get_count, .Sub, 1, .SeqCst);
var put_count = @atomicRmw(usize, &self.put_count, .Sub, 1, .SeqCst);
 
// transfer self.buffer to self.getters
while (self.buffer_len != 0) {
if (get_count == 0) break :one_dispatch;
 
const get_node = &self.getters.get().?.data;
switch (get_node.data) {
GetNode.Data.Normal => |info| {
info.ptr.* = self.buffer_nodes[(self.buffer_index -% self.buffer_len) % self.buffer_nodes.len];
},
GetNode.Data.OrNull => |info| {
_ = self.or_null_queue.remove(info.or_null);
info.ptr.* = self.buffer_nodes[(self.buffer_index -% self.buffer_len) % self.buffer_nodes.len];
},
}
global_event_loop.onNextTick(get_node.tick_node);
self.buffer_len -= 1;
 
get_count = @atomicRmw(usize, &self.get_count, .Sub, 1, .SeqCst);
}
 
// direct transfer self.putters to self.getters
while (get_count != 0 and put_count != 0) {
const get_node = &self.getters.get().?.data;
const put_node = &self.putters.get().?.data;
 
switch (get_node.data) {
GetNode.Data.Normal => |info| {
info.ptr.* = put_node.data;
},
GetNode.Data.OrNull => |info| {
_ = self.or_null_queue.remove(info.or_null);
info.ptr.* = put_node.data;
},
}
global_event_loop.onNextTick(get_node.tick_node);
global_event_loop.onNextTick(put_node.tick_node);
 
get_count = @atomicRmw(usize, &self.get_count, .Sub, 1, .SeqCst);
put_count = @atomicRmw(usize, &self.put_count, .Sub, 1, .SeqCst);
}
 
// transfer self.putters to self.buffer
while (self.buffer_len != self.buffer_nodes.len and put_count != 0) {
const put_node = &self.putters.get().?.data;
 
self.buffer_nodes[self.buffer_index % self.buffer_nodes.len] = put_node.data;
global_event_loop.onNextTick(put_node.tick_node);
self.buffer_index +%= 1;
self.buffer_len += 1;
 
put_count = @atomicRmw(usize, &self.put_count, .Sub, 1, .SeqCst);
}
}
 
// undo the extra subtractions
_ = @atomicRmw(usize, &self.get_count, .Add, 1, .SeqCst);
_ = @atomicRmw(usize, &self.put_count, .Add, 1, .SeqCst);
 
// All the "get or null" functions should resume now.
var remove_count: usize = 0;
while (self.or_null_queue.get()) |or_null_node| {
remove_count += @intFromBool(self.getters.remove(or_null_node.data));
global_event_loop.onNextTick(or_null_node.data.data.tick_node);
}
if (remove_count != 0) {
_ = @atomicRmw(usize, &self.get_count, .Sub, remove_count, .SeqCst);
}
 
// clear need-dispatch flag
if (@atomicRmw(bool, &self.need_dispatch, .Xchg, false, .SeqCst)) continue;
 
assert(@atomicRmw(bool, &self.dispatch_lock, .Xchg, false, .SeqCst));
 
// we have to check again now that we unlocked
if (@atomicLoad(bool, &self.need_dispatch, .SeqCst)) continue :lock;
 
return;
}
}
}
};
}
 
test "std.event.Channel" {
if (!std.io.is_async) return error.SkipZigTest;
 
// https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
 
// https://github.com/ziglang/zig/issues/3251
if (builtin.os.tag == .freebsd) return error.SkipZigTest;
 
var channel: Channel(i32) = undefined;
channel.init(&[0]i32{});
defer channel.deinit();
 
var handle = async testChannelGetter(&channel);
var putter = async testChannelPutter(&channel);
 
await handle;
await putter;
}
 
test "std.event.Channel wraparound" {
 
// TODO provide a way to run tests in evented I/O mode
if (!std.io.is_async) return error.SkipZigTest;
 
const channel_size = 2;
 
var buf: [channel_size]i32 = undefined;
var channel: Channel(i32) = undefined;
channel.init(&buf);
defer channel.deinit();
 
// add items to channel and pull them out until
// the buffer wraps around, make sure it doesn't crash.
channel.put(5);
try testing.expectEqual(@as(i32, 5), channel.get());
channel.put(6);
try testing.expectEqual(@as(i32, 6), channel.get());
channel.put(7);
try testing.expectEqual(@as(i32, 7), channel.get());
}
fn testChannelGetter(channel: *Channel(i32)) callconv(.Async) void {
const value1 = channel.get();
try testing.expect(value1 == 1234);
 
const value2 = channel.get();
try testing.expect(value2 == 4567);
 
const value3 = channel.getOrNull();
try testing.expect(value3 == null);
 
var last_put = async testPut(channel, 4444);
const value4 = channel.getOrNull();
try testing.expect(value4.? == 4444);
await last_put;
}
fn testChannelPutter(channel: *Channel(i32)) callconv(.Async) void {
channel.put(1234);
channel.put(4567);
}
fn testPut(channel: *Channel(i32), value: i32) callconv(.Async) void {
channel.put(value);
}
 
ev/null added: 15, removed: 3975, total 0
@@ -1,115 +0,0 @@
const std = @import("../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const testing = std.testing;
const Lock = std.event.Lock;
 
/// This is a value that starts out unavailable, until resolve() is called.
/// While it is unavailable, functions suspend when they try to get() it,
/// and then are resumed when resolve() is called.
/// At this point the value remains forever available, and another resolve() is not allowed.
pub fn Future(comptime T: type) type {
return struct {
lock: Lock,
data: T,
available: Available,
 
const Available = enum(u8) {
NotStarted,
Started,
Finished,
};
 
const Self = @This();
const Queue = std.atomic.Queue(anyframe);
 
pub fn init() Self {
return Self{
.lock = Lock.initLocked(),
.available = .NotStarted,
.data = undefined,
};
}
 
/// Obtain the value. If it's not available, wait until it becomes
/// available.
/// Thread-safe.
pub fn get(self: *Self) callconv(.Async) *T {
if (@atomicLoad(Available, &self.available, .SeqCst) == .Finished) {
return &self.data;
}
const held = self.lock.acquire();
held.release();
 
return &self.data;
}
 
/// Gets the data without waiting for it. If it's available, a pointer is
/// returned. Otherwise, null is returned.
pub fn getOrNull(self: *Self) ?*T {
if (@atomicLoad(Available, &self.available, .SeqCst) == .Finished) {
return &self.data;
} else {
return null;
}
}
 
/// If someone else has started working on the data, wait for them to complete
/// and return a pointer to the data. Otherwise, return null, and the caller
/// should start working on the data.
/// It's not required to call start() before resolve() but it can be useful since
/// this method is thread-safe.
pub fn start(self: *Self) callconv(.Async) ?*T {
const state = @cmpxchgStrong(Available, &self.available, .NotStarted, .Started, .SeqCst, .SeqCst) orelse return null;
switch (state) {
.Started => {
const held = self.lock.acquire();
held.release();
return &self.data;
},
.Finished => return &self.data,
else => unreachable,
}
}
 
/// Make the data become available. May be called only once.
/// Before calling this, modify the `data` property.
pub fn resolve(self: *Self) void {
const prev = @atomicRmw(Available, &self.available, .Xchg, .Finished, .SeqCst);
assert(prev != .Finished); // resolve() called twice
Lock.Held.release(Lock.Held{ .lock = &self.lock });
}
};
}
 
test "std.event.Future" {
// https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
// https://github.com/ziglang/zig/issues/3251
if (builtin.os.tag == .freebsd) return error.SkipZigTest;
// TODO provide a way to run tests in evented I/O mode
if (!std.io.is_async) return error.SkipZigTest;
 
testFuture();
}
 
fn testFuture() void {
var future = Future(i32).init();
 
var a = async waitOnFuture(&future);
var b = async waitOnFuture(&future);
resolveFuture(&future);
 
const result = (await a) + (await b);
 
try testing.expect(result == 12);
}
 
fn waitOnFuture(future: *Future(i32)) i32 {
return future.get().*;
}
 
fn resolveFuture(future: *Future(i32)) void {
future.data = 6;
future.resolve();
}
 
ev/null added: 15, removed: 3975, total 0
@@ -1,160 +0,0 @@
const std = @import("../std.zig");
const builtin = @import("builtin");
const Lock = std.event.Lock;
const testing = std.testing;
const Allocator = std.mem.Allocator;
 
/// ReturnType must be `void` or `E!void`
/// TODO This API was created back with the old design of async/await, when calling any
/// async function required an allocator. There is an ongoing experiment to transition
/// all uses of this API to the simpler and more resource-aware `std.event.Batch` API.
/// If the transition goes well, all usages of `Group` will be gone, and this API
/// will be deleted.
pub fn Group(comptime ReturnType: type) type {
return struct {
frame_stack: Stack,
alloc_stack: AllocStack,
lock: Lock,
allocator: Allocator,
 
const Self = @This();
 
const Error = switch (@typeInfo(ReturnType)) {
.ErrorUnion => |payload| payload.error_set,
else => void,
};
const Stack = std.atomic.Stack(anyframe->ReturnType);
const AllocStack = std.atomic.Stack(Node);
 
pub const Node = struct {
bytes: []const u8 = &[0]u8{},
handle: anyframe->ReturnType,
};
 
pub fn init(allocator: Allocator) Self {
return Self{
.frame_stack = Stack.init(),
.alloc_stack = AllocStack.init(),
.lock = .{},
.allocator = allocator,
};
}
 
/// Add a frame to the group. Thread-safe.
pub fn add(self: *Self, handle: anyframe->ReturnType) (error{OutOfMemory}!void) {
const node = try self.allocator.create(AllocStack.Node);
node.* = AllocStack.Node{
.next = undefined,
.data = Node{
.handle = handle,
},
};
self.alloc_stack.push(node);
}
 
/// Add a node to the group. Thread-safe. Cannot fail.
/// `node.data` should be the frame handle to add to the group.
/// The node's memory should be in the function frame of
/// the handle that is in the node, or somewhere guaranteed to live
/// at least as long.
pub fn addNode(self: *Self, node: *Stack.Node) void {
self.frame_stack.push(node);
}
 
/// This is equivalent to adding a frame to the group but the memory of its frame is
/// allocated by the group and freed by `wait`.
/// `func` must be async and have return type `ReturnType`.
/// Thread-safe.
pub fn call(self: *Self, comptime func: anytype, args: anytype) error{OutOfMemory}!void {
const frame = try self.allocator.create(@TypeOf(@call(.{ .modifier = .async_kw }, func, args)));
errdefer self.allocator.destroy(frame);
const node = try self.allocator.create(AllocStack.Node);
errdefer self.allocator.destroy(node);
node.* = AllocStack.Node{
.next = undefined,
.data = Node{
.handle = frame,
.bytes = std.mem.asBytes(frame),
},
};
frame.* = @call(.{ .modifier = .async_kw }, func, args);
self.alloc_stack.push(node);
}
 
/// Wait for all the calls and promises of the group to complete.
/// Thread-safe.
/// Safe to call any number of times.
pub fn wait(self: *Self) callconv(.Async) ReturnType {
const held = self.lock.acquire();
defer held.release();
 
var result: ReturnType = {};
 
while (self.frame_stack.pop()) |node| {
if (Error == void) {
await node.data;
} else {
(await node.data) catch |err| {
result = err;
};
}
}
while (self.alloc_stack.pop()) |node| {
const handle = node.data.handle;
if (Error == void) {
await handle;
} else {
(await handle) catch |err| {
result = err;
};
}
self.allocator.free(node.data.bytes);
self.allocator.destroy(node);
}
return result;
}
};
}
 
test "std.event.Group" {
// https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
 
if (!std.io.is_async) return error.SkipZigTest;
 
// TODO this file has bit-rotted. repair it
if (true) return error.SkipZigTest;
 
_ = async testGroup(std.heap.page_allocator);
}
fn testGroup(allocator: Allocator) callconv(.Async) void {
var count: usize = 0;
var group = Group(void).init(allocator);
var sleep_a_little_frame = async sleepALittle(&count);
group.add(&sleep_a_little_frame) catch @panic("memory");
var increase_by_ten_frame = async increaseByTen(&count);
group.add(&increase_by_ten_frame) catch @panic("memory");
group.wait();
try testing.expect(count == 11);
 
var another = Group(anyerror!void).init(allocator);
var something_else_frame = async somethingElse();
another.add(&something_else_frame) catch @panic("memory");
var something_that_fails_frame = async doSomethingThatFails();
another.add(&something_that_fails_frame) catch @panic("memory");
try testing.expectError(error.ItBroke, another.wait());
}
fn sleepALittle(count: *usize) callconv(.Async) void {
std.time.sleep(1 * std.time.ns_per_ms);
_ = @atomicRmw(usize, count, .Add, 1, .SeqCst);
}
fn increaseByTen(count: *usize) callconv(.Async) void {
var i: usize = 0;
while (i < 10) : (i += 1) {
_ = @atomicRmw(usize, count, .Add, 1, .SeqCst);
}
}
fn doSomethingThatFails() callconv(.Async) anyerror!void {}
fn somethingElse() callconv(.Async) anyerror!void {
return error.ItBroke;
}
 
ev/null added: 15, removed: 3975, total 0
@@ -1,162 +0,0 @@
const std = @import("../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const testing = std.testing;
const mem = std.mem;
const Loop = std.event.Loop;
 
/// Thread-safe async/await lock.
/// Functions which are waiting for the lock are suspended, and
/// are resumed when the lock is released, in order.
/// Allows only one actor to hold the lock.
/// TODO: make this API also work in blocking I/O mode.
pub const Lock = struct {
mutex: std.Thread.Mutex = std.Thread.Mutex{},
head: usize = UNLOCKED,
 
const UNLOCKED = 0;
const LOCKED = 1;
 
const global_event_loop = Loop.instance orelse
@compileError("std.event.Lock currently only works with event-based I/O");
 
const Waiter = struct {
// forced Waiter alignment to ensure it doesn't clash with LOCKED
next: ?*Waiter align(2),
tail: *Waiter,
node: Loop.NextTickNode,
};
 
pub fn initLocked() Lock {
return Lock{ .head = LOCKED };
}
 
pub fn acquire(self: *Lock) Held {
self.mutex.lock();
 
// self.head transitions from multiple stages depending on the value:
// UNLOCKED -> LOCKED:
// acquire Lock ownership when there are no waiters
// LOCKED -> <Waiter head ptr>:
// Lock is already owned, enqueue first Waiter
// <head ptr> -> <head ptr>:
// Lock is owned with pending waiters. Push our waiter to the queue.
 
if (self.head == UNLOCKED) {
self.head = LOCKED;
self.mutex.unlock();
return Held{ .lock = self };
}
 
var waiter: Waiter = undefined;
waiter.next = null;
waiter.tail = &waiter;
 
const head = switch (self.head) {
UNLOCKED => unreachable,
LOCKED => null,
else => @as(*Waiter, @ptrFromInt(self.head)),
};
 
if (head) |h| {
h.tail.next = &waiter;
h.tail = &waiter;
} else {
self.head = @intFromPtr(&waiter);
}
 
suspend {
waiter.node = Loop.NextTickNode{
.prev = undefined,
.next = undefined,
.data = @frame(),
};
self.mutex.unlock();
}
 
return Held{ .lock = self };
}
 
pub const Held = struct {
lock: *Lock,
 
pub fn release(self: Held) void {
const waiter = blk: {
self.lock.mutex.lock();
defer self.lock.mutex.unlock();
 
// self.head goes through the reverse transition from acquire():
// <head ptr> -> <new head ptr>:
// pop a waiter from the queue to give Lock ownership when there are still others pending
// <head ptr> -> LOCKED:
// pop the laster waiter from the queue, while also giving it lock ownership when awaken
// LOCKED -> UNLOCKED:
// last lock owner releases lock while no one else is waiting for it
 
switch (self.lock.head) {
UNLOCKED => {
unreachable; // Lock unlocked while unlocking
},
LOCKED => {
self.lock.head = UNLOCKED;
break :blk null;
},
else => {
const waiter = @as(*Waiter, @ptrFromInt(self.lock.head));
self.lock.head = if (waiter.next == null) LOCKED else @intFromPtr(waiter.next);
if (waiter.next) |next|
next.tail = waiter.tail;
break :blk waiter;
},
}
};
 
if (waiter) |w| {
global_event_loop.onNextTick(&w.node);
}
}
};
};
 
test "std.event.Lock" {
if (!std.io.is_async) return error.SkipZigTest;
 
// TODO https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
 
// TODO https://github.com/ziglang/zig/issues/3251
if (builtin.os.tag == .freebsd) return error.SkipZigTest;
 
var lock = Lock{};
testLock(&lock);
 
const expected_result = [1]i32{3 * @as(i32, @intCast(shared_test_data.len))} ** shared_test_data.len;
try testing.expectEqualSlices(i32, &expected_result, &shared_test_data);
}
fn testLock(lock: *Lock) void {
var handle1 = async lockRunner(lock);
var handle2 = async lockRunner(lock);
var handle3 = async lockRunner(lock);
 
await handle1;
await handle2;
await handle3;
}
 
var shared_test_data = [1]i32{0} ** 10;
var shared_test_index: usize = 0;
 
fn lockRunner(lock: *Lock) void {
Lock.global_event_loop.yield();
 
var i: usize = 0;
while (i < shared_test_data.len) : (i += 1) {
const handle = lock.acquire();
defer handle.release();
 
shared_test_index = 0;
while (shared_test_index < shared_test_data.len) : (shared_test_index += 1) {
shared_test_data[shared_test_index] = shared_test_data[shared_test_index] + 1;
}
}
}
 
ev/null added: 15, removed: 3975, total 0
@@ -1,42 +0,0 @@
const std = @import("../std.zig");
const Lock = std.event.Lock;
 
/// Thread-safe async/await lock that protects one piece of data.
/// Functions which are waiting for the lock are suspended, and
/// are resumed when the lock is released, in order.
pub fn Locked(comptime T: type) type {
return struct {
lock: Lock,
private_data: T,
 
const Self = @This();
 
pub const HeldLock = struct {
value: *T,
held: Lock.Held,
 
pub fn release(self: HeldLock) void {
self.held.release();
}
};
 
pub fn init(data: T) Self {
return Self{
.lock = .{},
.private_data = data,
};
}
 
pub fn deinit(self: *Self) void {
self.lock.deinit();
}
 
pub fn acquire(self: *Self) callconv(.Async) HeldLock {
return HeldLock{
// TODO guaranteed allocation elision
.held = self.lock.acquire(),
.value = &self.private_data,
};
}
};
}
 
ev/null added: 15, removed: 3975, total 0
@@ -1,1791 +0,0 @@
const std = @import("../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const testing = std.testing;
const mem = std.mem;
const os = std.os;
const windows = os.windows;
const maxInt = std.math.maxInt;
const Thread = std.Thread;
 
const is_windows = builtin.os.tag == .windows;
 
pub const Loop = struct {
next_tick_queue: std.atomic.Queue(anyframe),
os_data: OsData,
final_resume_node: ResumeNode,
pending_event_count: usize,
extra_threads: []Thread,
/// TODO change this to a pool of configurable number of threads
/// and rename it to be not file-system-specific. it will become
/// a thread pool for turning non-CPU-bound blocking things into
/// async things. A fallback for any missing OS-specific API.
fs_thread: Thread,
fs_queue: std.atomic.Queue(Request),
fs_end_request: Request.Node,
fs_thread_wakeup: std.Thread.ResetEvent,
 
/// For resources that have the same lifetime as the `Loop`.
/// This is only used by `Loop` for the thread pool and associated resources.
arena: std.heap.ArenaAllocator,
 
/// State which manages frames that are sleeping on timers
delay_queue: DelayQueue,
 
/// Pre-allocated eventfds. All permanently active.
/// This is how `Loop` sends promises to be resumed on other threads.
available_eventfd_resume_nodes: std.atomic.Stack(ResumeNode.EventFd),
eventfd_resume_nodes: []std.atomic.Stack(ResumeNode.EventFd).Node,
 
pub const NextTickNode = std.atomic.Queue(anyframe).Node;
 
pub const ResumeNode = struct {
id: Id,
handle: anyframe,
overlapped: Overlapped,
 
pub const overlapped_init = switch (builtin.os.tag) {
.windows => windows.OVERLAPPED{
.Internal = 0,
.InternalHigh = 0,
.DUMMYUNIONNAME = .{
.DUMMYSTRUCTNAME = .{
.Offset = 0,
.OffsetHigh = 0,
},
},
.hEvent = null,
},
else => {},
};
pub const Overlapped = @TypeOf(overlapped_init);
 
pub const Id = enum {
basic,
stop,
event_fd,
};
 
pub const EventFd = switch (builtin.os.tag) {
.macos, .ios, .tvos, .watchos, .freebsd, .netbsd, .dragonfly, .openbsd => KEventFd,
.linux => struct {
base: ResumeNode,
epoll_op: u32,
eventfd: i32,
},
.windows => struct {
base: ResumeNode,
completion_key: usize,
},
else => struct {},
};
 
const KEventFd = struct {
base: ResumeNode,
kevent: os.Kevent,
};
 
pub const Basic = switch (builtin.os.tag) {
.macos, .ios, .tvos, .watchos, .freebsd, .netbsd, .dragonfly, .openbsd => KEventBasic,
.linux => struct {
base: ResumeNode,
},
.windows => struct {
base: ResumeNode,
},
else => @compileError("unsupported OS"),
};
 
const KEventBasic = struct {
base: ResumeNode,
kev: os.Kevent,
};
};
 
pub const Instance = switch (std.options.io_mode) {
.blocking => @TypeOf(null),
.evented => ?*Loop,
};
pub const instance = std.options.event_loop;
 
var global_instance_state: Loop = undefined;
pub const default_instance = switch (std.options.io_mode) {
.blocking => null,
.evented => &global_instance_state,
};
 
pub const Mode = enum {
single_threaded,
multi_threaded,
};
pub const default_mode = .multi_threaded;
 
/// TODO copy elision / named return values so that the threads referencing *Loop
/// have the correct pointer value.
/// https://github.com/ziglang/zig/issues/2761 and https://github.com/ziglang/zig/issues/2765
pub fn init(self: *Loop) !void {
if (builtin.single_threaded or std.options.event_loop_mode == .single_threaded) {
return self.initSingleThreaded();
} else {
return self.initMultiThreaded();
}
}
 
/// After initialization, call run().
/// TODO copy elision / named return values so that the threads referencing *Loop
/// have the correct pointer value.
/// https://github.com/ziglang/zig/issues/2761 and https://github.com/ziglang/zig/issues/2765
pub fn initSingleThreaded(self: *Loop) !void {
return self.initThreadPool(1);
}
 
/// After initialization, call run().
/// This is the same as `initThreadPool` using `Thread.getCpuCount` to determine the thread
/// pool size.
/// TODO copy elision / named return values so that the threads referencing *Loop
/// have the correct pointer value.
/// https://github.com/ziglang/zig/issues/2761 and https://github.com/ziglang/zig/issues/2765
pub fn initMultiThreaded(self: *Loop) !void {
if (builtin.single_threaded)
@compileError("initMultiThreaded unavailable when building in single-threaded mode");
const core_count = try Thread.getCpuCount();
return self.initThreadPool(core_count);
}
 
/// Thread count is the total thread count. The thread pool size will be
/// max(thread_count - 1, 0)
pub fn initThreadPool(self: *Loop, thread_count: usize) !void {
self.* = Loop{
.arena = std.heap.ArenaAllocator.init(std.heap.page_allocator),
.pending_event_count = 1,
.os_data = undefined,
.next_tick_queue = std.atomic.Queue(anyframe).init(),
.extra_threads = undefined,
.available_eventfd_resume_nodes = std.atomic.Stack(ResumeNode.EventFd).init(),
.eventfd_resume_nodes = undefined,
.final_resume_node = ResumeNode{
.id = .stop,
.handle = undefined,
.overlapped = ResumeNode.overlapped_init,
},
.fs_end_request = .{ .data = .{ .msg = .end, .finish = .no_action } },
.fs_queue = std.atomic.Queue(Request).init(),
.fs_thread = undefined,
.fs_thread_wakeup = .{},
.delay_queue = undefined,
};
errdefer self.arena.deinit();
 
// We need at least one of these in case the fs thread wants to use onNextTick
const extra_thread_count = thread_count - 1;
const resume_node_count = @max(extra_thread_count, 1);
self.eventfd_resume_nodes = try self.arena.allocator().alloc(
std.atomic.Stack(ResumeNode.EventFd).Node,
resume_node_count,
);
 
self.extra_threads = try self.arena.allocator().alloc(Thread, extra_thread_count);
 
try self.initOsData(extra_thread_count);
errdefer self.deinitOsData();
 
if (!builtin.single_threaded) {
self.fs_thread = try Thread.spawn(.{}, posixFsRun, .{self});
}
errdefer if (!builtin.single_threaded) {
self.posixFsRequest(&self.fs_end_request);
self.fs_thread.join();
};
 
if (!builtin.single_threaded)
try self.delay_queue.init();
}
 
pub fn deinit(self: *Loop) void {
self.deinitOsData();
self.arena.deinit();
self.* = undefined;
}
 
const InitOsDataError = os.EpollCreateError || mem.Allocator.Error || os.EventFdError ||
Thread.SpawnError || os.EpollCtlError || os.KEventError ||
windows.CreateIoCompletionPortError;
 
const wakeup_bytes = [_]u8{0x1} ** 8;
 
fn initOsData(self: *Loop, extra_thread_count: usize) InitOsDataError!void {
nosuspend switch (builtin.os.tag) {
.linux => {
errdefer {
while (self.available_eventfd_resume_nodes.pop()) |node| os.close(node.data.eventfd);
}
for (self.eventfd_resume_nodes) |*eventfd_node| {
eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{
.data = ResumeNode.EventFd{
.base = ResumeNode{
.id = .event_fd,
.handle = undefined,
.overlapped = ResumeNode.overlapped_init,
},
.eventfd = try os.eventfd(1, os.linux.EFD.CLOEXEC | os.linux.EFD.NONBLOCK),
.epoll_op = os.linux.EPOLL.CTL_ADD,
},
.next = undefined,
};
self.available_eventfd_resume_nodes.push(eventfd_node);
}
 
self.os_data.epollfd = try os.epoll_create1(os.linux.EPOLL.CLOEXEC);
errdefer os.close(self.os_data.epollfd);
 
self.os_data.final_eventfd = try os.eventfd(0, os.linux.EFD.CLOEXEC | os.linux.EFD.NONBLOCK);
errdefer os.close(self.os_data.final_eventfd);
 
self.os_data.final_eventfd_event = os.linux.epoll_event{
.events = os.linux.EPOLL.IN,
.data = os.linux.epoll_data{ .ptr = @intFromPtr(&self.final_resume_node) },
};
try os.epoll_ctl(
self.os_data.epollfd,
os.linux.EPOLL.CTL_ADD,
self.os_data.final_eventfd,
&self.os_data.final_eventfd_event,
);
 
if (builtin.single_threaded) {
assert(extra_thread_count == 0);
return;
}
 
var extra_thread_index: usize = 0;
errdefer {
// writing 8 bytes to an eventfd cannot fail
const amt = os.write(self.os_data.final_eventfd, &wakeup_bytes) catch unreachable;
assert(amt == wakeup_bytes.len);
while (extra_thread_index != 0) {
extra_thread_index -= 1;
self.extra_threads[extra_thread_index].join();
}
}
while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) {
self.extra_threads[extra_thread_index] = try Thread.spawn(.{}, workerRun, .{self});
}
},
.macos, .ios, .tvos, .watchos, .freebsd, .netbsd, .dragonfly => {
self.os_data.kqfd = try os.kqueue();
errdefer os.close(self.os_data.kqfd);
 
const empty_kevs = &[0]os.Kevent{};
 
for (self.eventfd_resume_nodes, 0..) |*eventfd_node, i| {
eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{
.data = ResumeNode.EventFd{
.base = ResumeNode{
.id = .event_fd,
.handle = undefined,
.overlapped = ResumeNode.overlapped_init,
},
// this one is for sending events
.kevent = os.Kevent{
.ident = i,
.filter = os.system.EVFILT_USER,
.flags = os.system.EV_CLEAR | os.system.EV_ADD | os.system.EV_DISABLE,
.fflags = 0,
.data = 0,
.udata = @intFromPtr(&eventfd_node.data.base),
},
},
.next = undefined,
};
self.available_eventfd_resume_nodes.push(eventfd_node);
const kevent_array = @as(*const [1]os.Kevent, &eventfd_node.data.kevent);
_ = try os.kevent(self.os_data.kqfd, kevent_array, empty_kevs, null);
eventfd_node.data.kevent.flags = os.system.EV_CLEAR | os.system.EV_ENABLE;
eventfd_node.data.kevent.fflags = os.system.NOTE_TRIGGER;
}
 
// Pre-add so that we cannot get error.SystemResources
// later when we try to activate it.
self.os_data.final_kevent = os.Kevent{
.ident = extra_thread_count,
.filter = os.system.EVFILT_USER,
.flags = os.system.EV_ADD | os.system.EV_DISABLE,
.fflags = 0,
.data = 0,
.udata = @intFromPtr(&self.final_resume_node),
};
const final_kev_arr = @as(*const [1]os.Kevent, &self.os_data.final_kevent);
_ = try os.kevent(self.os_data.kqfd, final_kev_arr, empty_kevs, null);
self.os_data.final_kevent.flags = os.system.EV_ENABLE;
self.os_data.final_kevent.fflags = os.system.NOTE_TRIGGER;
 
if (builtin.single_threaded) {
assert(extra_thread_count == 0);
return;
}
 
var extra_thread_index: usize = 0;
errdefer {
_ = os.kevent(self.os_data.kqfd, final_kev_arr, empty_kevs, null) catch unreachable;
while (extra_thread_index != 0) {
extra_thread_index -= 1;
self.extra_threads[extra_thread_index].join();
}
}
while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) {
self.extra_threads[extra_thread_index] = try Thread.spawn(.{}, workerRun, .{self});
}
},
.openbsd => {
self.os_data.kqfd = try os.kqueue();
errdefer os.close(self.os_data.kqfd);
 
const empty_kevs = &[0]os.Kevent{};
 
for (self.eventfd_resume_nodes, 0..) |*eventfd_node, i| {
eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{
.data = ResumeNode.EventFd{
.base = ResumeNode{
.id = .event_fd,
.handle = undefined,
.overlapped = ResumeNode.overlapped_init,
},
// this one is for sending events
.kevent = os.Kevent{
.ident = i,
.filter = os.system.EVFILT_TIMER,
.flags = os.system.EV_CLEAR | os.system.EV_ADD | os.system.EV_DISABLE | os.system.EV_ONESHOT,
.fflags = 0,
.data = 0,
.udata = @intFromPtr(&eventfd_node.data.base),
},
},
.next = undefined,
};
self.available_eventfd_resume_nodes.push(eventfd_node);
const kevent_array = @as(*const [1]os.Kevent, &eventfd_node.data.kevent);
_ = try os.kevent(self.os_data.kqfd, kevent_array, empty_kevs, null);
eventfd_node.data.kevent.flags = os.system.EV_CLEAR | os.system.EV_ENABLE;
}
 
// Pre-add so that we cannot get error.SystemResources
// later when we try to activate it.
self.os_data.final_kevent = os.Kevent{
.ident = extra_thread_count,
.filter = os.system.EVFILT_TIMER,
.flags = os.system.EV_ADD | os.system.EV_ONESHOT | os.system.EV_DISABLE,
.fflags = 0,
.data = 0,
.udata = @intFromPtr(&self.final_resume_node),
};
const final_kev_arr = @as(*const [1]os.Kevent, &self.os_data.final_kevent);
_ = try os.kevent(self.os_data.kqfd, final_kev_arr, empty_kevs, null);
self.os_data.final_kevent.flags = os.system.EV_ENABLE;
 
if (builtin.single_threaded) {
assert(extra_thread_count == 0);
return;
}
 
var extra_thread_index: usize = 0;
errdefer {
_ = os.kevent(self.os_data.kqfd, final_kev_arr, empty_kevs, null) catch unreachable;
while (extra_thread_index != 0) {
extra_thread_index -= 1;
self.extra_threads[extra_thread_index].join();
}
}
while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) {
self.extra_threads[extra_thread_index] = try Thread.spawn(.{}, workerRun, .{self});
}
},
.windows => {
self.os_data.io_port = try windows.CreateIoCompletionPort(
windows.INVALID_HANDLE_VALUE,
null,
undefined,
maxInt(windows.DWORD),
);
errdefer windows.CloseHandle(self.os_data.io_port);
 
for (self.eventfd_resume_nodes) |*eventfd_node| {
eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{
.data = ResumeNode.EventFd{
.base = ResumeNode{
.id = .event_fd,
.handle = undefined,
.overlapped = ResumeNode.overlapped_init,
},
// this one is for sending events
.completion_key = @intFromPtr(&eventfd_node.data.base),
},
.next = undefined,
};
self.available_eventfd_resume_nodes.push(eventfd_node);
}
 
if (builtin.single_threaded) {
assert(extra_thread_count == 0);
return;
}
 
var extra_thread_index: usize = 0;
errdefer {
var i: usize = 0;
while (i < extra_thread_index) : (i += 1) {
while (true) {
const overlapped = &self.final_resume_node.overlapped;
windows.PostQueuedCompletionStatus(self.os_data.io_port, undefined, undefined, overlapped) catch continue;
break;
}
}
while (extra_thread_index != 0) {
extra_thread_index -= 1;
self.extra_threads[extra_thread_index].join();
}
}
while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) {
self.extra_threads[extra_thread_index] = try Thread.spawn(.{}, workerRun, .{self});
}
},
else => {},
};
}
 
fn deinitOsData(self: *Loop) void {
nosuspend switch (builtin.os.tag) {
.linux => {
os.close(self.os_data.final_eventfd);
while (self.available_eventfd_resume_nodes.pop()) |node| os.close(node.data.eventfd);
os.close(self.os_data.epollfd);
},
.macos, .ios, .tvos, .watchos, .freebsd, .netbsd, .dragonfly, .openbsd => {
os.close(self.os_data.kqfd);
},
.windows => {
windows.CloseHandle(self.os_data.io_port);
},
else => {},
};
}
 
/// resume_node must live longer than the anyframe that it holds a reference to.
/// flags must contain EPOLLET
pub fn linuxAddFd(self: *Loop, fd: i32, resume_node: *ResumeNode, flags: u32) !void {
assert(flags & os.linux.EPOLL.ET == os.linux.EPOLL.ET);
self.beginOneEvent();
errdefer self.finishOneEvent();
try self.linuxModFd(
fd,
os.linux.EPOLL.CTL_ADD,
flags,
resume_node,
);
}
 
pub fn linuxModFd(self: *Loop, fd: i32, op: u32, flags: u32, resume_node: *ResumeNode) !void {
assert(flags & os.linux.EPOLL.ET == os.linux.EPOLL.ET);
var ev = os.linux.epoll_event{
.events = flags,
.data = os.linux.epoll_data{ .ptr = @intFromPtr(resume_node) },
};
try os.epoll_ctl(self.os_data.epollfd, op, fd, &ev);
}
 
pub fn linuxRemoveFd(self: *Loop, fd: i32) void {
os.epoll_ctl(self.os_data.epollfd, os.linux.EPOLL.CTL_DEL, fd, null) catch {};
self.finishOneEvent();
}
 
pub fn linuxWaitFd(self: *Loop, fd: i32, flags: u32) void {
assert(flags & os.linux.EPOLL.ET == os.linux.EPOLL.ET);
assert(flags & os.linux.EPOLL.ONESHOT == os.linux.EPOLL.ONESHOT);
var resume_node = ResumeNode.Basic{
.base = ResumeNode{
.id = .basic,
.handle = @frame(),
.overlapped = ResumeNode.overlapped_init,
},
};
var need_to_delete = true;
defer if (need_to_delete) self.linuxRemoveFd(fd);
 
suspend {
self.linuxAddFd(fd, &resume_node.base, flags) catch |err| switch (err) {
error.FileDescriptorNotRegistered => unreachable,
error.OperationCausesCircularLoop => unreachable,
error.FileDescriptorIncompatibleWithEpoll => unreachable,
error.FileDescriptorAlreadyPresentInSet => unreachable, // evented writes to the same fd is not thread-safe
 
error.SystemResources,
error.UserResourceLimitReached,
error.Unexpected,
=> {
need_to_delete = false;
// Fall back to a blocking poll(). Ideally this codepath is never hit, since
// epoll should be just fine. But this is better than incorrect behavior.
var poll_flags: i16 = 0;
if ((flags & os.linux.EPOLL.IN) != 0) poll_flags |= os.POLL.IN;
if ((flags & os.linux.EPOLL.OUT) != 0) poll_flags |= os.POLL.OUT;
var pfd = [1]os.pollfd{os.pollfd{
.fd = fd,
.events = poll_flags,
.revents = undefined,
}};
_ = os.poll(&pfd, -1) catch |poll_err| switch (poll_err) {
error.NetworkSubsystemFailed => unreachable, // only possible on windows
 
error.SystemResources,
error.Unexpected,
=> {
// Even poll() didn't work. The best we can do now is sleep for a
// small duration and then hope that something changed.
std.time.sleep(1 * std.time.ns_per_ms);
},
};
resume @frame();
},
};
}
}
 
pub fn waitUntilFdReadable(self: *Loop, fd: os.fd_t) void {
switch (builtin.os.tag) {
.linux => {
self.linuxWaitFd(fd, os.linux.EPOLL.ET | os.linux.EPOLL.ONESHOT | os.linux.EPOLL.IN);
},
.macos, .ios, .tvos, .watchos, .freebsd, .netbsd, .dragonfly, .openbsd => {
self.bsdWaitKev(@as(usize, @intCast(fd)), os.system.EVFILT_READ, os.system.EV_ONESHOT);
},
else => @compileError("Unsupported OS"),
}
}
 
pub fn waitUntilFdWritable(self: *Loop, fd: os.fd_t) void {
switch (builtin.os.tag) {
.linux => {
self.linuxWaitFd(fd, os.linux.EPOLL.ET | os.linux.EPOLL.ONESHOT | os.linux.EPOLL.OUT);
},
.macos, .ios, .tvos, .watchos, .freebsd, .netbsd, .dragonfly, .openbsd => {
self.bsdWaitKev(@as(usize, @intCast(fd)), os.system.EVFILT_WRITE, os.system.EV_ONESHOT);
},
else => @compileError("Unsupported OS"),
}
}
 
pub fn waitUntilFdWritableOrReadable(self: *Loop, fd: os.fd_t) void {
switch (builtin.os.tag) {
.linux => {
self.linuxWaitFd(fd, os.linux.EPOLL.ET | os.linux.EPOLL.ONESHOT | os.linux.EPOLL.OUT | os.linux.EPOLL.IN);
},
.macos, .ios, .tvos, .watchos, .freebsd, .netbsd, .dragonfly, .openbsd => {
self.bsdWaitKev(@as(usize, @intCast(fd)), os.system.EVFILT_READ, os.system.EV_ONESHOT);
self.bsdWaitKev(@as(usize, @intCast(fd)), os.system.EVFILT_WRITE, os.system.EV_ONESHOT);
},
else => @compileError("Unsupported OS"),
}
}
 
pub fn bsdWaitKev(self: *Loop, ident: usize, filter: i16, flags: u16) void {
var resume_node = ResumeNode.Basic{
.base = ResumeNode{
.id = .basic,
.handle = @frame(),
.overlapped = ResumeNode.overlapped_init,
},
.kev = undefined,
};
 
defer {
// If the kevent was set to be ONESHOT, it doesn't need to be deleted manually.
if (flags & os.system.EV_ONESHOT != 0) {
self.bsdRemoveKev(ident, filter);
}
}
 
suspend {
self.bsdAddKev(&resume_node, ident, filter, flags) catch unreachable;
}
}
 
/// resume_node must live longer than the anyframe that it holds a reference to.
pub fn bsdAddKev(self: *Loop, resume_node: *ResumeNode.Basic, ident: usize, filter: i16, flags: u16) !void {
self.beginOneEvent();
errdefer self.finishOneEvent();
var kev = [1]os.Kevent{os.Kevent{
.ident = ident,
.filter = filter,
.flags = os.system.EV_ADD | os.system.EV_ENABLE | os.system.EV_CLEAR | flags,
.fflags = 0,
.data = 0,
.udata = @intFromPtr(&resume_node.base),
}};
const empty_kevs = &[0]os.Kevent{};
_ = try os.kevent(self.os_data.kqfd, &kev, empty_kevs, null);
}
 
pub fn bsdRemoveKev(self: *Loop, ident: usize, filter: i16) void {
var kev = [1]os.Kevent{os.Kevent{
.ident = ident,
.filter = filter,
.flags = os.system.EV_DELETE,
.fflags = 0,
.data = 0,
.udata = 0,
}};
const empty_kevs = &[0]os.Kevent{};
_ = os.kevent(self.os_data.kqfd, &kev, empty_kevs, null) catch undefined;
self.finishOneEvent();
}
 
fn dispatch(self: *Loop) void {
while (self.available_eventfd_resume_nodes.pop()) |resume_stack_node| {
const next_tick_node = self.next_tick_queue.get() orelse {
self.available_eventfd_resume_nodes.push(resume_stack_node);
return;
};
const eventfd_node = &resume_stack_node.data;
eventfd_node.base.handle = next_tick_node.data;
switch (builtin.os.tag) {
.macos, .ios, .tvos, .watchos, .freebsd, .netbsd, .dragonfly, .openbsd => {
const kevent_array = @as(*const [1]os.Kevent, &eventfd_node.kevent);
const empty_kevs = &[0]os.Kevent{};
_ = os.kevent(self.os_data.kqfd, kevent_array, empty_kevs, null) catch {
self.next_tick_queue.unget(next_tick_node);
self.available_eventfd_resume_nodes.push(resume_stack_node);
return;
};
},
.linux => {
// the pending count is already accounted for
const epoll_events = os.linux.EPOLL.ONESHOT | os.linux.EPOLL.IN | os.linux.EPOLL.OUT |
os.linux.EPOLL.ET;
self.linuxModFd(
eventfd_node.eventfd,
eventfd_node.epoll_op,
epoll_events,
&eventfd_node.base,
) catch {
self.next_tick_queue.unget(next_tick_node);
self.available_eventfd_resume_nodes.push(resume_stack_node);
return;
};
},
.windows => {
windows.PostQueuedCompletionStatus(
self.os_data.io_port,
undefined,
undefined,
&eventfd_node.base.overlapped,
) catch {
self.next_tick_queue.unget(next_tick_node);
self.available_eventfd_resume_nodes.push(resume_stack_node);
return;
};
},
else => @compileError("unsupported OS"),
}
}
}
 
/// Bring your own linked list node. This means it can't fail.
pub fn onNextTick(self: *Loop, node: *NextTickNode) void {
self.beginOneEvent(); // finished in dispatch()
self.next_tick_queue.put(node);
self.dispatch();
}
 
pub fn cancelOnNextTick(self: *Loop, node: *NextTickNode) void {
if (self.next_tick_queue.remove(node)) {
self.finishOneEvent();
}
}
 
pub fn run(self: *Loop) void {
self.finishOneEvent(); // the reference we start with
 
self.workerRun();
 
if (!builtin.single_threaded) {
switch (builtin.os.tag) {
.linux,
.macos,
.ios,
.tvos,
.watchos,
.freebsd,
.netbsd,
.dragonfly,
.openbsd,
=> self.fs_thread.join(),
else => {},
}
}
 
for (self.extra_threads) |extra_thread| {
extra_thread.join();
}
 
self.delay_queue.deinit();
}
 
/// Runs the provided function asynchronously. The function's frame is allocated
/// with `allocator` and freed when the function returns.
/// `func` must return void and it can be an async function.
/// Yields to the event loop, running the function on the next tick.
pub fn runDetached(self: *Loop, alloc: mem.Allocator, comptime func: anytype, args: anytype) error{OutOfMemory}!void {
if (!std.io.is_async) @compileError("Can't use runDetached in non-async mode!");
if (@TypeOf(@call(.{}, func, args)) != void) {
@compileError("`func` must not have a return value");
}
 
const Wrapper = struct {
const Args = @TypeOf(args);
fn run(func_args: Args, loop: *Loop, allocator: mem.Allocator) void {
loop.beginOneEvent();
loop.yield();
@call(.{}, func, func_args); // compile error when called with non-void ret type
suspend {
loop.finishOneEvent();
allocator.destroy(@frame());
}
}
};
 
const run_frame = try alloc.create(@Frame(Wrapper.run));
run_frame.* = async Wrapper.run(args, self, alloc);
}
 
/// Yielding lets the event loop run, starting any unstarted async operations.
/// Note that async operations automatically start when a function yields for any other reason,
/// for example, when async I/O is performed. This function is intended to be used only when
/// CPU bound tasks would be waiting in the event loop but never get started because no async I/O
/// is performed.
pub fn yield(self: *Loop) void {
suspend {
var my_tick_node = NextTickNode{
.prev = undefined,
.next = undefined,
.data = @frame(),
};
self.onNextTick(&my_tick_node);
}
}
 
/// If the build is multi-threaded and there is an event loop, then it calls `yield`. Otherwise,
/// does nothing.
pub fn startCpuBoundOperation() void {
if (builtin.single_threaded) {
return;
} else if (instance) |event_loop| {
event_loop.yield();
}
}
 
/// call finishOneEvent when done
pub fn beginOneEvent(self: *Loop) void {
_ = @atomicRmw(usize, &self.pending_event_count, .Add, 1, .SeqCst);
}
 
pub fn finishOneEvent(self: *Loop) void {
nosuspend {
const prev = @atomicRmw(usize, &self.pending_event_count, .Sub, 1, .SeqCst);
if (prev != 1) return;
 
// cause all the threads to stop
self.posixFsRequest(&self.fs_end_request);
 
switch (builtin.os.tag) {
.linux => {
// writing to the eventfd will only wake up one thread, thus multiple writes
// are needed to wakeup all the threads
var i: usize = 0;
while (i < self.extra_threads.len + 1) : (i += 1) {
// writing 8 bytes to an eventfd cannot fail
const amt = os.write(self.os_data.final_eventfd, &wakeup_bytes) catch unreachable;
assert(amt == wakeup_bytes.len);
}
return;
},
.macos, .ios, .tvos, .watchos, .freebsd, .netbsd, .dragonfly, .openbsd => {
const final_kevent = @as(*const [1]os.Kevent, &self.os_data.final_kevent);
const empty_kevs = &[0]os.Kevent{};
// cannot fail because we already added it and this just enables it
_ = os.kevent(self.os_data.kqfd, final_kevent, empty_kevs, null) catch unreachable;
return;
},
.windows => {
var i: usize = 0;
while (i < self.extra_threads.len + 1) : (i += 1) {
while (true) {
const overlapped = &self.final_resume_node.overlapped;
windows.PostQueuedCompletionStatus(self.os_data.io_port, undefined, undefined, overlapped) catch continue;
break;
}
}
return;
},
else => @compileError("unsupported OS"),
}
}
}
 
pub fn sleep(self: *Loop, nanoseconds: u64) void {
if (builtin.single_threaded)
@compileError("TODO: integrate timers with epoll/kevent/iocp for single-threaded");
 
suspend {
const now = self.delay_queue.timer.read();
 
var entry: DelayQueue.Waiters.Entry = undefined;
entry.init(@frame(), now + nanoseconds);
self.delay_queue.waiters.insert(&entry);
 
// Speculatively wake up the timer thread when we add a new entry.
// If the timer thread is sleeping on a longer entry, we need to
// interrupt it so that our entry can be expired in time.
self.delay_queue.event.set();
}
}
 
const DelayQueue = struct {
timer: std.time.Timer,
waiters: Waiters,
thread: std.Thread,
event: std.Thread.ResetEvent,
is_running: std.atomic.Value(bool),
 
/// Initialize the delay queue by spawning the timer thread
/// and starting any timer resources.
fn init(self: *DelayQueue) !void {
self.* = DelayQueue{
.timer = try std.time.Timer.start(),
.waiters = DelayQueue.Waiters{
.entries = std.atomic.Queue(anyframe).init(),
},
.thread = undefined,
.event = .{},
.is_running = std.atomic.Value(bool).init(true),
};
 
// Must be after init so that it can read the other state, such as `is_running`.
self.thread = try std.Thread.spawn(.{}, DelayQueue.run, .{self});
}
 
fn deinit(self: *DelayQueue) void {
self.is_running.store(false, .SeqCst);
self.event.set();
self.thread.join();
}
 
/// Entry point for the timer thread
/// which waits for timer entries to expire and reschedules them.
fn run(self: *DelayQueue) void {
const loop = @fieldParentPtr(Loop, "delay_queue", self);
 
while (self.is_running.load(.SeqCst)) {
self.event.reset();
const now = self.timer.read();
 
if (self.waiters.popExpired(now)) |entry| {
loop.onNextTick(&entry.node);
continue;
}
 
if (self.waiters.nextExpire()) |expires| {
if (now >= expires)
continue;
self.event.timedWait(expires - now) catch {};
} else {
self.event.wait();
}
}
}
 
// TODO: use a tickless hierarchical timer wheel:
// https://github.com/wahern/timeout/
const Waiters = struct {
entries: std.atomic.Queue(anyframe),
 
const Entry = struct {
node: NextTickNode,
expires: u64,
 
fn init(self: *Entry, frame: anyframe, expires: u64) void {
self.node.data = frame;
self.expires = expires;
}
};
 
/// Registers the entry into the queue of waiting frames
fn insert(self: *Waiters, entry: *Entry) void {
self.entries.put(&entry.node);
}
 
/// Dequeues one expired event relative to `now`
fn popExpired(self: *Waiters, now: u64) ?*Entry {
const entry = self.peekExpiringEntry() orelse return null;
if (entry.expires > now)
return null;
 
assert(self.entries.remove(&entry.node));
return entry;
}
 
/// Returns an estimate for the amount of time
/// to wait until the next waiting entry expires.
fn nextExpire(self: *Waiters) ?u64 {
const entry = self.peekExpiringEntry() orelse return null;
return entry.expires;
}
 
fn peekExpiringEntry(self: *Waiters) ?*Entry {
self.entries.mutex.lock();
defer self.entries.mutex.unlock();
 
// starting from the head
var head = self.entries.head orelse return null;
 
// traverse the list of waiting entries to
// find the Node with the smallest `expires` field
var min = head;
while (head.next) |node| {
const minEntry = @fieldParentPtr(Entry, "node", min);
const nodeEntry = @fieldParentPtr(Entry, "node", node);
if (nodeEntry.expires < minEntry.expires)
min = node;
head = node;
}
 
return @fieldParentPtr(Entry, "node", min);
}
};
};
 
/// ------- I/0 APIs -------
pub fn accept(
self: *Loop,
/// This argument is a socket that has been created with `socket`, bound to a local address
/// with `bind`, and is listening for connections after a `listen`.
sockfd: os.socket_t,
/// This argument is a pointer to a sockaddr structure. This structure is filled in with the
/// address of the peer socket, as known to the communications layer. The exact format of the
/// address returned addr is determined by the socket's address family (see `socket` and the
/// respective protocol man pages).
addr: *os.sockaddr,
/// This argument is a value-result argument: the caller must initialize it to contain the
/// size (in bytes) of the structure pointed to by addr; on return it will contain the actual size
/// of the peer address.
///
/// The returned address is truncated if the buffer provided is too small; in this case, `addr_size`
/// will return a value greater than was supplied to the call.
addr_size: *os.socklen_t,
/// The following values can be bitwise ORed in flags to obtain different behavior:
/// * `SOCK.CLOEXEC` - Set the close-on-exec (`FD_CLOEXEC`) flag on the new file descriptor. See the
/// description of the `O.CLOEXEC` flag in `open` for reasons why this may be useful.
flags: u32,
) os.AcceptError!os.socket_t {
while (true) {
return os.accept(sockfd, addr, addr_size, flags | os.SOCK.NONBLOCK) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdReadable(sockfd);
continue;
},
else => return err,
};
}
}
 
pub fn connect(self: *Loop, sockfd: os.socket_t, sock_addr: *const os.sockaddr, len: os.socklen_t) os.ConnectError!void {
os.connect(sockfd, sock_addr, len) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdWritable(sockfd);
return os.getsockoptError(sockfd);
},
else => return err,
};
}
 
/// Performs an async `os.open` using a separate thread.
pub fn openZ(self: *Loop, file_path: [*:0]const u8, flags: u32, mode: os.mode_t) os.OpenError!os.fd_t {
var req_node = Request.Node{
.data = .{
.msg = .{
.open = .{
.path = file_path,
.flags = flags,
.mode = mode,
.result = undefined,
},
},
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.open.result;
}
 
/// Performs an async `os.opent` using a separate thread.
pub fn openatZ(self: *Loop, fd: os.fd_t, file_path: [*:0]const u8, flags: u32, mode: os.mode_t) os.OpenError!os.fd_t {
var req_node = Request.Node{
.data = .{
.msg = .{
.openat = .{
.fd = fd,
.path = file_path,
.flags = flags,
.mode = mode,
.result = undefined,
},
},
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.openat.result;
}
 
/// Performs an async `os.close` using a separate thread.
pub fn close(self: *Loop, fd: os.fd_t) void {
var req_node = Request.Node{
.data = .{
.msg = .{ .close = .{ .fd = fd } },
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
}
 
/// Performs an async `os.read` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn read(self: *Loop, fd: os.fd_t, buf: []u8, simulate_evented: bool) os.ReadError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.read = .{
.fd = fd,
.buf = buf,
.result = undefined,
},
},
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.read.result;
} else {
while (true) {
return os.read(fd, buf) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdReadable(fd);
continue;
},
else => return err,
};
}
}
}
 
/// Performs an async `os.readv` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn readv(self: *Loop, fd: os.fd_t, iov: []const os.iovec, simulate_evented: bool) os.ReadError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.readv = .{
.fd = fd,
.iov = iov,
.result = undefined,
},
},
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.readv.result;
} else {
while (true) {
return os.readv(fd, iov) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdReadable(fd);
continue;
},
else => return err,
};
}
}
}
 
/// Performs an async `os.pread` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn pread(self: *Loop, fd: os.fd_t, buf: []u8, offset: u64, simulate_evented: bool) os.PReadError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.pread = .{
.fd = fd,
.buf = buf,
.offset = offset,
.result = undefined,
},
},
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.pread.result;
} else {
while (true) {
return os.pread(fd, buf, offset) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdReadable(fd);
continue;
},
else => return err,
};
}
}
}
 
/// Performs an async `os.preadv` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn preadv(self: *Loop, fd: os.fd_t, iov: []const os.iovec, offset: u64, simulate_evented: bool) os.ReadError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.preadv = .{
.fd = fd,
.iov = iov,
.offset = offset,
.result = undefined,
},
},
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.preadv.result;
} else {
while (true) {
return os.preadv(fd, iov, offset) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdReadable(fd);
continue;
},
else => return err,
};
}
}
}
 
/// Performs an async `os.write` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn write(self: *Loop, fd: os.fd_t, bytes: []const u8, simulate_evented: bool) os.WriteError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.write = .{
.fd = fd,
.bytes = bytes,
.result = undefined,
},
},
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.write.result;
} else {
while (true) {
return os.write(fd, bytes) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdWritable(fd);
continue;
},
else => return err,
};
}
}
}
 
/// Performs an async `os.writev` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn writev(self: *Loop, fd: os.fd_t, iov: []const os.iovec_const, simulate_evented: bool) os.WriteError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.writev = .{
.fd = fd,
.iov = iov,
.result = undefined,
},
},
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.writev.result;
} else {
while (true) {
return os.writev(fd, iov) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdWritable(fd);
continue;
},
else => return err,
};
}
}
}
 
/// Performs an async `os.pwrite` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn pwrite(self: *Loop, fd: os.fd_t, bytes: []const u8, offset: u64, simulate_evented: bool) os.PerformsWriteError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.pwrite = .{
.fd = fd,
.bytes = bytes,
.offset = offset,
.result = undefined,
},
},
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.pwrite.result;
} else {
while (true) {
return os.pwrite(fd, bytes, offset) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdWritable(fd);
continue;
},
else => return err,
};
}
}
}
 
/// Performs an async `os.pwritev` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn pwritev(self: *Loop, fd: os.fd_t, iov: []const os.iovec_const, offset: u64, simulate_evented: bool) os.PWriteError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.pwritev = .{
.fd = fd,
.iov = iov,
.offset = offset,
.result = undefined,
},
},
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.pwritev.result;
} else {
while (true) {
return os.pwritev(fd, iov, offset) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdWritable(fd);
continue;
},
else => return err,
};
}
}
}
 
pub fn sendto(
self: *Loop,
/// The file descriptor of the sending socket.
sockfd: os.fd_t,
/// Message to send.
buf: []const u8,
flags: u32,
dest_addr: ?*const os.sockaddr,
addrlen: os.socklen_t,
) os.SendToError!usize {
while (true) {
return os.sendto(sockfd, buf, flags, dest_addr, addrlen) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdWritable(sockfd);
continue;
},
else => return err,
};
}
}
 
pub fn recvfrom(
self: *Loop,
sockfd: os.fd_t,
buf: []u8,
flags: u32,
src_addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
) os.RecvFromError!usize {
while (true) {
return os.recvfrom(sockfd, buf, flags, src_addr, addrlen) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdReadable(sockfd);
continue;
},
else => return err,
};
}
}
 
/// Performs an async `os.faccessatZ` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn faccessatZ(
self: *Loop,
dirfd: os.fd_t,
path_z: [*:0]const u8,
mode: u32,
flags: u32,
) os.AccessError!void {
var req_node = Request.Node{
.data = .{
.msg = .{
.faccessat = .{
.dirfd = dirfd,
.path = path_z,
.mode = mode,
.flags = flags,
.result = undefined,
},
},
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.faccessat.result;
}
 
fn workerRun(self: *Loop) void {
while (true) {
while (true) {
const next_tick_node = self.next_tick_queue.get() orelse break;
self.dispatch();
resume next_tick_node.data;
self.finishOneEvent();
}
 
switch (builtin.os.tag) {
.linux => {
// only process 1 event so we don't steal from other threads
var events: [1]os.linux.epoll_event = undefined;
const count = os.epoll_wait(self.os_data.epollfd, events[0..], -1);
for (events[0..count]) |ev| {
const resume_node = @as(*ResumeNode, @ptrFromInt(ev.data.ptr));
const handle = resume_node.handle;
const resume_node_id = resume_node.id;
switch (resume_node_id) {
.basic => {},
.stop => return,
.event_fd => {
const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node);
event_fd_node.epoll_op = os.linux.EPOLL.CTL_MOD;
const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node);
self.available_eventfd_resume_nodes.push(stack_node);
},
}
resume handle;
if (resume_node_id == .event_fd) {
self.finishOneEvent();
}
}
},
.macos, .ios, .tvos, .watchos, .freebsd, .netbsd, .dragonfly, .openbsd => {
var eventlist: [1]os.Kevent = undefined;
const empty_kevs = &[0]os.Kevent{};
const count = os.kevent(self.os_data.kqfd, empty_kevs, eventlist[0..], null) catch unreachable;
for (eventlist[0..count]) |ev| {
const resume_node = @as(*ResumeNode, @ptrFromInt(ev.udata));
const handle = resume_node.handle;
const resume_node_id = resume_node.id;
switch (resume_node_id) {
.basic => {
const basic_node = @fieldParentPtr(ResumeNode.Basic, "base", resume_node);
basic_node.kev = ev;
},
.stop => return,
.event_fd => {
const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node);
const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node);
self.available_eventfd_resume_nodes.push(stack_node);
},
}
resume handle;
if (resume_node_id == .event_fd) {
self.finishOneEvent();
}
}
},
.windows => {
var completion_key: usize = undefined;
const overlapped = while (true) {
var nbytes: windows.DWORD = undefined;
var overlapped: ?*windows.OVERLAPPED = undefined;
switch (windows.GetQueuedCompletionStatus(self.os_data.io_port, &nbytes, &completion_key, &overlapped, windows.INFINITE)) {
.Aborted => return,
.Normal => {},
.EOF => {},
.Cancelled => continue,
}
if (overlapped) |o| break o;
};
const resume_node = @fieldParentPtr(ResumeNode, "overlapped", overlapped);
const handle = resume_node.handle;
const resume_node_id = resume_node.id;
switch (resume_node_id) {
.basic => {},
.stop => return,
.event_fd => {
const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node);
const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node);
self.available_eventfd_resume_nodes.push(stack_node);
},
}
resume handle;
self.finishOneEvent();
},
else => @compileError("unsupported OS"),
}
}
}
 
fn posixFsRequest(self: *Loop, request_node: *Request.Node) void {
self.beginOneEvent(); // finished in posixFsRun after processing the msg
self.fs_queue.put(request_node);
self.fs_thread_wakeup.set();
}
 
fn posixFsCancel(self: *Loop, request_node: *Request.Node) void {
if (self.fs_queue.remove(request_node)) {
self.finishOneEvent();
}
}
 
fn posixFsRun(self: *Loop) void {
nosuspend while (true) {
self.fs_thread_wakeup.reset();
while (self.fs_queue.get()) |node| {
switch (node.data.msg) {
.end => return,
.read => |*msg| {
msg.result = os.read(msg.fd, msg.buf);
},
.readv => |*msg| {
msg.result = os.readv(msg.fd, msg.iov);
},
.write => |*msg| {
msg.result = os.write(msg.fd, msg.bytes);
},
.writev => |*msg| {
msg.result = os.writev(msg.fd, msg.iov);
},
.pwrite => |*msg| {
msg.result = os.pwrite(msg.fd, msg.bytes, msg.offset);
},
.pwritev => |*msg| {
msg.result = os.pwritev(msg.fd, msg.iov, msg.offset);
},
.pread => |*msg| {
msg.result = os.pread(msg.fd, msg.buf, msg.offset);
},
.preadv => |*msg| {
msg.result = os.preadv(msg.fd, msg.iov, msg.offset);
},
.open => |*msg| {
if (is_windows) unreachable; // TODO
msg.result = os.openZ(msg.path, msg.flags, msg.mode);
},
.openat => |*msg| {
if (is_windows) unreachable; // TODO
msg.result = os.openatZ(msg.fd, msg.path, msg.flags, msg.mode);
},
.faccessat => |*msg| {
msg.result = os.faccessatZ(msg.dirfd, msg.path, msg.mode, msg.flags);
},
.close => |*msg| os.close(msg.fd),
}
switch (node.data.finish) {
.tick_node => |*tick_node| self.onNextTick(tick_node),
.no_action => {},
}
self.finishOneEvent();
}
self.fs_thread_wakeup.wait();
};
}
 
const OsData = switch (builtin.os.tag) {
.linux => LinuxOsData,
.macos, .ios, .tvos, .watchos, .freebsd, .netbsd, .dragonfly, .openbsd => KEventData,
.windows => struct {
io_port: windows.HANDLE,
extra_thread_count: usize,
},
else => struct {},
};
 
const KEventData = struct {
kqfd: i32,
final_kevent: os.Kevent,
};
 
const LinuxOsData = struct {
epollfd: i32,
final_eventfd: i32,
final_eventfd_event: os.linux.epoll_event,
};
 
pub const Request = struct {
msg: Msg,
finish: Finish,
 
pub const Node = std.atomic.Queue(Request).Node;
 
pub const Finish = union(enum) {
tick_node: Loop.NextTickNode,
no_action,
};
 
pub const Msg = union(enum) {
read: Read,
readv: ReadV,
write: Write,
writev: WriteV,
pwrite: PWrite,
pwritev: PWriteV,
pread: PRead,
preadv: PReadV,
open: Open,
openat: OpenAt,
close: Close,
faccessat: FAccessAt,
 
/// special - means the fs thread should exit
end,
 
pub const Read = struct {
fd: os.fd_t,
buf: []u8,
result: Error!usize,
 
pub const Error = os.ReadError;
};
 
pub const ReadV = struct {
fd: os.fd_t,
iov: []const os.iovec,
result: Error!usize,
 
pub const Error = os.ReadError;
};
 
pub const Write = struct {
fd: os.fd_t,
bytes: []const u8,
result: Error!usize,
 
pub const Error = os.WriteError;
};
 
pub const WriteV = struct {
fd: os.fd_t,
iov: []const os.iovec_const,
result: Error!usize,
 
pub const Error = os.WriteError;
};
 
pub const PWrite = struct {
fd: os.fd_t,
bytes: []const u8,
offset: usize,
result: Error!usize,
 
pub const Error = os.PWriteError;
};
 
pub const PWriteV = struct {
fd: os.fd_t,
iov: []const os.iovec_const,
offset: usize,
result: Error!usize,
 
pub const Error = os.PWriteError;
};
 
pub const PRead = struct {
fd: os.fd_t,
buf: []u8,
offset: usize,
result: Error!usize,
 
pub const Error = os.PReadError;
};
 
pub const PReadV = struct {
fd: os.fd_t,
iov: []const os.iovec,
offset: usize,
result: Error!usize,
 
pub const Error = os.PReadError;
};
 
pub const Open = struct {
path: [*:0]const u8,
flags: u32,
mode: os.mode_t,
result: Error!os.fd_t,
 
pub const Error = os.OpenError;
};
 
pub const OpenAt = struct {
fd: os.fd_t,
path: [*:0]const u8,
flags: u32,
mode: os.mode_t,
result: Error!os.fd_t,
 
pub const Error = os.OpenError;
};
 
pub const Close = struct {
fd: os.fd_t,
};
 
pub const FAccessAt = struct {
dirfd: os.fd_t,
path: [*:0]const u8,
mode: u32,
flags: u32,
result: Error!void,
 
pub const Error = os.AccessError;
};
};
};
};
 
test "std.event.Loop - basic" {
// https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
 
if (true) {
// https://github.com/ziglang/zig/issues/4922
return error.SkipZigTest;
}
 
var loop: Loop = undefined;
try loop.initMultiThreaded();
defer loop.deinit();
 
loop.run();
}
 
fn testEventLoop() i32 {
return 1234;
}
 
fn testEventLoop2(h: anyframe->i32, did_it: *bool) void {
const value = await h;
try testing.expect(value == 1234);
did_it.* = true;
}
 
var testRunDetachedData: usize = 0;
test "std.event.Loop - runDetached" {
// https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
if (!std.io.is_async) return error.SkipZigTest;
if (true) {
// https://github.com/ziglang/zig/issues/4922
return error.SkipZigTest;
}
 
var loop: Loop = undefined;
try loop.initMultiThreaded();
defer loop.deinit();
 
// Schedule the execution, won't actually start until we start the
// event loop.
try loop.runDetached(std.testing.allocator, testRunDetached, .{});
 
// Now we can start the event loop. The function will return only
// after all tasks have been completed, allowing us to synchronize
// with the previous runDetached.
loop.run();
 
try testing.expect(testRunDetachedData == 1);
}
 
fn testRunDetached() void {
testRunDetachedData += 1;
}
 
test "std.event.Loop - sleep" {
// https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
if (!std.io.is_async) return error.SkipZigTest;
 
const frames = try testing.allocator.alloc(@Frame(testSleep), 10);
defer testing.allocator.free(frames);
 
const wait_time = 100 * std.time.ns_per_ms;
var sleep_count: usize = 0;
 
for (frames) |*frame|
frame.* = async testSleep(wait_time, &sleep_count);
for (frames) |*frame|
await frame;
 
try testing.expect(sleep_count == frames.len);
}
 
fn testSleep(wait_ns: u64, sleep_count: *usize) void {
Loop.instance.?.sleep(wait_ns);
_ = @atomicRmw(usize, sleep_count, .Add, 1, .SeqCst);
}
 
ev/null added: 15, removed: 3975, total 0
@@ -1,292 +0,0 @@
const std = @import("../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const testing = std.testing;
const mem = std.mem;
const Loop = std.event.Loop;
const Allocator = std.mem.Allocator;
 
/// Thread-safe async/await lock.
/// Functions which are waiting for the lock are suspended, and
/// are resumed when the lock is released, in order.
/// Many readers can hold the lock at the same time; however locking for writing is exclusive.
/// When a read lock is held, it will not be released until the reader queue is empty.
/// When a write lock is held, it will not be released until the writer queue is empty.
/// TODO: make this API also work in blocking I/O mode
pub const RwLock = struct {
shared_state: State,
writer_queue: Queue,
reader_queue: Queue,
writer_queue_empty: bool,
reader_queue_empty: bool,
reader_lock_count: usize,
 
const State = enum(u8) {
Unlocked,
WriteLock,
ReadLock,
};
 
const Queue = std.atomic.Queue(anyframe);
 
const global_event_loop = Loop.instance orelse
@compileError("std.event.RwLock currently only works with event-based I/O");
 
pub const HeldRead = struct {
lock: *RwLock,
 
pub fn release(self: HeldRead) void {
// If other readers still hold the lock, we're done.
if (@atomicRmw(usize, &self.lock.reader_lock_count, .Sub, 1, .SeqCst) != 1) {
return;
}
 
@atomicStore(bool, &self.lock.reader_queue_empty, true, .SeqCst);
if (@cmpxchgStrong(State, &self.lock.shared_state, .ReadLock, .Unlocked, .SeqCst, .SeqCst) != null) {
// Didn't unlock. Someone else's problem.
return;
}
 
self.lock.commonPostUnlock();
}
};
 
pub const HeldWrite = struct {
lock: *RwLock,
 
pub fn release(self: HeldWrite) void {
// See if we can leave it locked for writing, and pass the lock to the next writer
// in the queue to grab the lock.
if (self.lock.writer_queue.get()) |node| {
global_event_loop.onNextTick(node);
return;
}
 
// We need to release the write lock. Check if any readers are waiting to grab the lock.
if (!@atomicLoad(bool, &self.lock.reader_queue_empty, .SeqCst)) {
// Switch to a read lock.
@atomicStore(State, &self.lock.shared_state, .ReadLock, .SeqCst);
while (self.lock.reader_queue.get()) |node| {
global_event_loop.onNextTick(node);
}
return;
}
 
@atomicStore(bool, &self.lock.writer_queue_empty, true, .SeqCst);
@atomicStore(State, &self.lock.shared_state, .Unlocked, .SeqCst);
 
self.lock.commonPostUnlock();
}
};
 
pub fn init() RwLock {
return .{
.shared_state = .Unlocked,
.writer_queue = Queue.init(),
.writer_queue_empty = true,
.reader_queue = Queue.init(),
.reader_queue_empty = true,
.reader_lock_count = 0,
};
}
 
/// Must be called when not locked. Not thread safe.
/// All calls to acquire() and release() must complete before calling deinit().
pub fn deinit(self: *RwLock) void {
assert(self.shared_state == .Unlocked);
while (self.writer_queue.get()) |node| resume node.data;
while (self.reader_queue.get()) |node| resume node.data;
}
 
pub fn acquireRead(self: *RwLock) callconv(.Async) HeldRead {
_ = @atomicRmw(usize, &self.reader_lock_count, .Add, 1, .SeqCst);
 
suspend {
var my_tick_node = Loop.NextTickNode{
.data = @frame(),
.prev = undefined,
.next = undefined,
};
 
self.reader_queue.put(&my_tick_node);
 
// At this point, we are in the reader_queue, so we might have already been resumed.
 
// We set this bit so that later we can rely on the fact, that if reader_queue_empty == true,
// some actor will attempt to grab the lock.
@atomicStore(bool, &self.reader_queue_empty, false, .SeqCst);
 
// Here we don't care if we are the one to do the locking or if it was already locked for reading.
const have_read_lock = if (@cmpxchgStrong(State, &self.shared_state, .Unlocked, .ReadLock, .SeqCst, .SeqCst)) |old_state| old_state == .ReadLock else true;
if (have_read_lock) {
// Give out all the read locks.
if (self.reader_queue.get()) |first_node| {
while (self.reader_queue.get()) |node| {
global_event_loop.onNextTick(node);
}
resume first_node.data;
}
}
}
return HeldRead{ .lock = self };
}
 
pub fn acquireWrite(self: *RwLock) callconv(.Async) HeldWrite {
suspend {
var my_tick_node = Loop.NextTickNode{
.data = @frame(),
.prev = undefined,
.next = undefined,
};
 
self.writer_queue.put(&my_tick_node);
 
// At this point, we are in the writer_queue, so we might have already been resumed.
 
// We set this bit so that later we can rely on the fact, that if writer_queue_empty == true,
// some actor will attempt to grab the lock.
@atomicStore(bool, &self.writer_queue_empty, false, .SeqCst);
 
// Here we must be the one to acquire the write lock. It cannot already be locked.
if (@cmpxchgStrong(State, &self.shared_state, .Unlocked, .WriteLock, .SeqCst, .SeqCst) == null) {
// We now have a write lock.
if (self.writer_queue.get()) |node| {
// Whether this node is us or someone else, we tail resume it.
resume node.data;
}
}
}
return HeldWrite{ .lock = self };
}
 
fn commonPostUnlock(self: *RwLock) void {
while (true) {
// There might be a writer_queue item or a reader_queue item
// If we check and both are empty, we can be done, because the other actors will try to
// obtain the lock.
// But if there's a writer_queue item or a reader_queue item,
// we are the actor which must loop and attempt to grab the lock again.
if (!@atomicLoad(bool, &self.writer_queue_empty, .SeqCst)) {
if (@cmpxchgStrong(State, &self.shared_state, .Unlocked, .WriteLock, .SeqCst, .SeqCst) != null) {
// We did not obtain the lock. Great, the queues are someone else's problem.
return;
}
// If there's an item in the writer queue, give them the lock, and we're done.
if (self.writer_queue.get()) |node| {
global_event_loop.onNextTick(node);
return;
}
// Release the lock again.
@atomicStore(bool, &self.writer_queue_empty, true, .SeqCst);
@atomicStore(State, &self.shared_state, .Unlocked, .SeqCst);
continue;
}
 
if (!@atomicLoad(bool, &self.reader_queue_empty, .SeqCst)) {
if (@cmpxchgStrong(State, &self.shared_state, .Unlocked, .ReadLock, .SeqCst, .SeqCst) != null) {
// We did not obtain the lock. Great, the queues are someone else's problem.
return;
}
// If there are any items in the reader queue, give out all the reader locks, and we're done.
if (self.reader_queue.get()) |first_node| {
global_event_loop.onNextTick(first_node);
while (self.reader_queue.get()) |node| {
global_event_loop.onNextTick(node);
}
return;
}
// Release the lock again.
@atomicStore(bool, &self.reader_queue_empty, true, .SeqCst);
if (@cmpxchgStrong(State, &self.shared_state, .ReadLock, .Unlocked, .SeqCst, .SeqCst) != null) {
// Didn't unlock. Someone else's problem.
return;
}
continue;
}
return;
}
}
};
 
test "std.event.RwLock" {
// https://github.com/ziglang/zig/issues/2377
if (true) return error.SkipZigTest;
 
// https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
 
// TODO provide a way to run tests in evented I/O mode
if (!std.io.is_async) return error.SkipZigTest;
 
var lock = RwLock.init();
defer lock.deinit();
 
_ = testLock(std.heap.page_allocator, &lock);
 
const expected_result = [1]i32{shared_it_count * @as(i32, @intCast(shared_test_data.len))} ** shared_test_data.len;
try testing.expectEqualSlices(i32, expected_result, shared_test_data);
}
fn testLock(allocator: Allocator, lock: *RwLock) callconv(.Async) void {
var read_nodes: [100]Loop.NextTickNode = undefined;
for (&read_nodes) |*read_node| {
const frame = allocator.create(@Frame(readRunner)) catch @panic("memory");
read_node.data = frame;
frame.* = async readRunner(lock);
Loop.instance.?.onNextTick(read_node);
}
 
var write_nodes: [shared_it_count]Loop.NextTickNode = undefined;
for (&write_nodes) |*write_node| {
const frame = allocator.create(@Frame(writeRunner)) catch @panic("memory");
write_node.data = frame;
frame.* = async writeRunner(lock);
Loop.instance.?.onNextTick(write_node);
}
 
for (&write_nodes) |*write_node| {
const casted = @as(*const @Frame(writeRunner), @ptrCast(write_node.data));
await casted;
allocator.destroy(casted);
}
for (&read_nodes) |*read_node| {
const casted = @as(*const @Frame(readRunner), @ptrCast(read_node.data));
await casted;
allocator.destroy(casted);
}
}
 
const shared_it_count = 10;
var shared_test_data = [1]i32{0} ** 10;
var shared_test_index: usize = 0;
var shared_count: usize = 0;
fn writeRunner(lock: *RwLock) callconv(.Async) void {
suspend {} // resumed by onNextTick
 
var i: usize = 0;
while (i < shared_test_data.len) : (i += 1) {
std.time.sleep(100 * std.time.microsecond);
const lock_promise = async lock.acquireWrite();
const handle = await lock_promise;
defer handle.release();
 
shared_count += 1;
while (shared_test_index < shared_test_data.len) : (shared_test_index += 1) {
shared_test_data[shared_test_index] = shared_test_data[shared_test_index] + 1;
}
shared_test_index = 0;
}
}
fn readRunner(lock: *RwLock) callconv(.Async) void {
suspend {} // resumed by onNextTick
std.time.sleep(1);
 
var i: usize = 0;
while (i < shared_test_data.len) : (i += 1) {
const lock_promise = async lock.acquireRead();
const handle = await lock_promise;
defer handle.release();
 
try testing.expect(shared_test_index == 0);
try testing.expect(shared_test_data[i] == @as(i32, @intCast(shared_count)));
}
}
 
ev/null added: 15, removed: 3975, total 0
@@ -1,57 +0,0 @@
const std = @import("../std.zig");
const RwLock = std.event.RwLock;
 
/// Thread-safe async/await RW lock that protects one piece of data.
/// Functions which are waiting for the lock are suspended, and
/// are resumed when the lock is released, in order.
pub fn RwLocked(comptime T: type) type {
return struct {
lock: RwLock,
locked_data: T,
 
const Self = @This();
 
pub const HeldReadLock = struct {
value: *const T,
held: RwLock.HeldRead,
 
pub fn release(self: HeldReadLock) void {
self.held.release();
}
};
 
pub const HeldWriteLock = struct {
value: *T,
held: RwLock.HeldWrite,
 
pub fn release(self: HeldWriteLock) void {
self.held.release();
}
};
 
pub fn init(data: T) Self {
return Self{
.lock = RwLock.init(),
.locked_data = data,
};
}
 
pub fn deinit(self: *Self) void {
self.lock.deinit();
}
 
pub fn acquireRead(self: *Self) callconv(.Async) HeldReadLock {
return HeldReadLock{
.held = self.lock.acquireRead(),
.value = &self.locked_data,
};
}
 
pub fn acquireWrite(self: *Self) callconv(.Async) HeldWriteLock {
return HeldWriteLock{
.held = self.lock.acquireWrite(),
.value = &self.locked_data,
};
}
};
}
 
ev/null added: 15, removed: 3975, total 0
@@ -1,115 +0,0 @@
const std = @import("../std.zig");
const builtin = @import("builtin");
const Loop = std.event.Loop;
 
/// A WaitGroup keeps track and waits for a group of async tasks to finish.
/// Call `begin` when creating new tasks, and have tasks call `finish` when done.
/// You can provide a count for both operations to perform them in bulk.
/// Call `wait` to suspend until all tasks are completed.
/// Multiple waiters are supported.
///
/// WaitGroup is an instance of WaitGroupGeneric, which takes in a bitsize
/// for the internal counter. WaitGroup defaults to a `usize` counter.
/// It's also possible to define a max value for the counter so that
/// `begin` will return error.Overflow when the limit is reached, even
/// if the integer type has not has not overflowed.
/// By default `max_value` is set to std.math.maxInt(CounterType).
pub const WaitGroup = WaitGroupGeneric(@bitSizeOf(usize));
 
pub fn WaitGroupGeneric(comptime counter_size: u16) type {
const CounterType = std.meta.Int(.unsigned, counter_size);
 
const global_event_loop = Loop.instance orelse
@compileError("std.event.WaitGroup currently only works with event-based I/O");
 
return struct {
counter: CounterType = 0,
max_counter: CounterType = std.math.maxInt(CounterType),
mutex: std.Thread.Mutex = .{},
waiters: ?*Waiter = null,
const Waiter = struct {
next: ?*Waiter,
tail: *Waiter,
node: Loop.NextTickNode,
};
 
const Self = @This();
pub fn begin(self: *Self, count: CounterType) error{Overflow}!void {
self.mutex.lock();
defer self.mutex.unlock();
 
const new_counter = try std.math.add(CounterType, self.counter, count);
if (new_counter > self.max_counter) return error.Overflow;
self.counter = new_counter;
}
 
pub fn finish(self: *Self, count: CounterType) void {
var waiters = blk: {
self.mutex.lock();
defer self.mutex.unlock();
self.counter = std.math.sub(CounterType, self.counter, count) catch unreachable;
if (self.counter == 0) {
const temp = self.waiters;
self.waiters = null;
break :blk temp;
}
break :blk null;
};
 
// We don't need to hold the lock to reschedule any potential waiter.
while (waiters) |w| {
const temp_w = w;
waiters = w.next;
global_event_loop.onNextTick(&temp_w.node);
}
}
 
pub fn wait(self: *Self) void {
self.mutex.lock();
 
if (self.counter == 0) {
self.mutex.unlock();
return;
}
 
var self_waiter: Waiter = undefined;
self_waiter.node.data = @frame();
if (self.waiters) |head| {
head.tail.next = &self_waiter;
head.tail = &self_waiter;
} else {
self.waiters = &self_waiter;
self_waiter.tail = &self_waiter;
self_waiter.next = null;
}
suspend {
self.mutex.unlock();
}
}
};
}
 
test "basic WaitGroup usage" {
if (!std.io.is_async) return error.SkipZigTest;
 
// TODO https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
 
// TODO https://github.com/ziglang/zig/issues/3251
if (builtin.os.tag == .freebsd) return error.SkipZigTest;
 
var initial_wg = WaitGroup{};
var final_wg = WaitGroup{};
 
try initial_wg.begin(1);
try final_wg.begin(1);
var task_frame = async task(&initial_wg, &final_wg);
initial_wg.finish(1);
final_wg.wait();
await task_frame;
}
 
fn task(wg_i: *WaitGroup, wg_f: *WaitGroup) void {
wg_i.wait();
wg_f.finish(1);
}
 
lib/std/fs.zig added: 15, removed: 3975, total 0
@@ -31,8 +31,6 @@ pub const realpathW = os.realpathW;
pub const getAppDataDir = @import("fs/get_app_data_dir.zig").getAppDataDir;
pub const GetAppDataDirError = @import("fs/get_app_data_dir.zig").GetAppDataDirError;
 
pub const Watch = @import("fs/watch.zig").Watch;
 
/// This represents the maximum size of a UTF-8 encoded file path that the
/// operating system will accept. Paths, including those returned from file
/// system operations, may be longer than this length, but such paths cannot
@@ -641,5 +639,4 @@ test {
_ = &path;
_ = @import("fs/test.zig");
_ = @import("fs/get_app_data_dir.zig");
_ = @import("fs/watch.zig");
}
 
ev/null added: 15, removed: 3975, total 0
@@ -1,719 +0,0 @@
const std = @import("std");
const builtin = @import("builtin");
const event = std.event;
const assert = std.debug.assert;
const testing = std.testing;
const os = std.os;
const mem = std.mem;
const windows = os.windows;
const Loop = event.Loop;
const fd_t = os.fd_t;
const File = std.fs.File;
const Allocator = mem.Allocator;
 
const global_event_loop = Loop.instance orelse
@compileError("std.fs.Watch currently only works with event-based I/O");
 
const WatchEventId = enum {
CloseWrite,
Delete,
};
 
const WatchEventError = error{
UserResourceLimitReached,
SystemResources,
AccessDenied,
Unexpected, // TODO remove this possibility
};
 
pub fn Watch(comptime V: type) type {
return struct {
channel: event.Channel(Event.Error!Event),
os_data: OsData,
allocator: Allocator,
 
const OsData = switch (builtin.os.tag) {
// TODO https://github.com/ziglang/zig/issues/3778
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => KqOsData,
.linux => LinuxOsData,
.windows => WindowsOsData,
 
else => @compileError("Unsupported OS"),
};
 
const KqOsData = struct {
table_lock: event.Lock,
file_table: FileTable,
 
const FileTable = std.StringHashMapUnmanaged(*Put);
const Put = struct {
putter_frame: @Frame(kqPutEvents),
cancelled: bool = false,
value: V,
};
};
 
const WindowsOsData = struct {
table_lock: event.Lock,
dir_table: DirTable,
cancelled: bool = false,
 
const DirTable = std.StringHashMapUnmanaged(*Dir);
const FileTable = std.StringHashMapUnmanaged(V);
 
const Dir = struct {
putter_frame: @Frame(windowsDirReader),
file_table: FileTable,
dir_handle: os.windows.HANDLE,
};
};
 
const LinuxOsData = struct {
putter_frame: @Frame(linuxEventPutter),
inotify_fd: i32,
wd_table: WdTable,
table_lock: event.Lock,
cancelled: bool = false,
 
const WdTable = std.AutoHashMapUnmanaged(i32, Dir);
const FileTable = std.StringHashMapUnmanaged(V);
 
const Dir = struct {
dirname: []const u8,
file_table: FileTable,
};
};
 
const Self = @This();
 
pub const Event = struct {
id: Id,
data: V,
dirname: []const u8,
basename: []const u8,
 
pub const Id = WatchEventId;
pub const Error = WatchEventError;
};
 
pub fn init(allocator: Allocator, event_buf_count: usize) !*Self {
const self = try allocator.create(Self);
errdefer allocator.destroy(self);
 
switch (builtin.os.tag) {
.linux => {
const inotify_fd = try os.inotify_init1(os.linux.IN_NONBLOCK | os.linux.IN_CLOEXEC);
errdefer os.close(inotify_fd);
 
self.* = Self{
.allocator = allocator,
.channel = undefined,
.os_data = OsData{
.putter_frame = undefined,
.inotify_fd = inotify_fd,
.wd_table = OsData.WdTable.init(allocator),
.table_lock = event.Lock{},
},
};
 
const buf = try allocator.alloc(Event.Error!Event, event_buf_count);
self.channel.init(buf);
self.os_data.putter_frame = async self.linuxEventPutter();
return self;
},
 
.windows => {
self.* = Self{
.allocator = allocator,
.channel = undefined,
.os_data = OsData{
.table_lock = event.Lock{},
.dir_table = OsData.DirTable.init(allocator),
},
};
 
const buf = try allocator.alloc(Event.Error!Event, event_buf_count);
self.channel.init(buf);
return self;
},
 
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => {
self.* = Self{
.allocator = allocator,
.channel = undefined,
.os_data = OsData{
.table_lock = event.Lock{},
.file_table = OsData.FileTable.init(allocator),
},
};
 
const buf = try allocator.alloc(Event.Error!Event, event_buf_count);
self.channel.init(buf);
return self;
},
else => @compileError("Unsupported OS"),
}
}
 
pub fn deinit(self: *Self) void {
switch (builtin.os.tag) {
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => {
var it = self.os_data.file_table.iterator();
while (it.next()) |entry| {
const key = entry.key_ptr.*;
const value = entry.value_ptr.*;
value.cancelled = true;
// @TODO Close the fd here?
await value.putter_frame;
self.allocator.free(key);
self.allocator.destroy(value);
}
},
.linux => {
self.os_data.cancelled = true;
{
// Remove all directory watches linuxEventPutter will take care of
// cleaning up the memory and closing the inotify fd.
var dir_it = self.os_data.wd_table.keyIterator();
while (dir_it.next()) |wd_key| {
const rc = os.linux.inotify_rm_watch(self.os_data.inotify_fd, wd_key.*);
// Errno can only be EBADF, EINVAL if either the inotify fs or the wd are invalid
std.debug.assert(rc == 0);
}
}
await self.os_data.putter_frame;
},
.windows => {
self.os_data.cancelled = true;
var dir_it = self.os_data.dir_table.iterator();
while (dir_it.next()) |dir_entry| {
if (windows.kernel32.CancelIoEx(dir_entry.value.dir_handle, null) != 0) {
// We canceled the pending ReadDirectoryChangesW operation, but our
// frame is still suspending, now waiting indefinitely.
// Thus, it is safe to resume it ourslves
resume dir_entry.value.putter_frame;
} else {
std.debug.assert(windows.kernel32.GetLastError() == .NOT_FOUND);
// We are at another suspend point, we can await safely for the
// function to exit the loop
await dir_entry.value.putter_frame;
}
 
self.allocator.free(dir_entry.key_ptr.*);
var file_it = dir_entry.value.file_table.keyIterator();
while (file_it.next()) |file_entry| {
self.allocator.free(file_entry.*);
}
dir_entry.value.file_table.deinit(self.allocator);
self.allocator.destroy(dir_entry.value_ptr.*);
}
self.os_data.dir_table.deinit(self.allocator);
},
else => @compileError("Unsupported OS"),
}
self.allocator.free(self.channel.buffer_nodes);
self.channel.deinit();
self.allocator.destroy(self);
}
 
pub fn addFile(self: *Self, file_path: []const u8, value: V) !?V {
switch (builtin.os.tag) {
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => return addFileKEvent(self, file_path, value),
.linux => return addFileLinux(self, file_path, value),
.windows => return addFileWindows(self, file_path, value),
else => @compileError("Unsupported OS"),
}
}
 
fn addFileKEvent(self: *Self, file_path: []const u8, value: V) !?V {
var realpath_buf: [std.fs.MAX_PATH_BYTES]u8 = undefined;
const realpath = try os.realpath(file_path, &realpath_buf);
 
const held = self.os_data.table_lock.acquire();
defer held.release();
 
const gop = try self.os_data.file_table.getOrPut(self.allocator, realpath);
errdefer assert(self.os_data.file_table.remove(realpath));
if (gop.found_existing) {
const prev_value = gop.value_ptr.value;
gop.value_ptr.value = value;
return prev_value;
}
 
gop.key_ptr.* = try self.allocator.dupe(u8, realpath);
errdefer self.allocator.free(gop.key_ptr.*);
gop.value_ptr.* = try self.allocator.create(OsData.Put);
errdefer self.allocator.destroy(gop.value_ptr.*);
gop.value_ptr.* = .{
.putter_frame = undefined,
.value = value,
};
 
// @TODO Can I close this fd and get an error from bsdWaitKev?
const flags = if (comptime builtin.target.isDarwin()) os.O.SYMLINK | os.O.EVTONLY else 0;
const fd = try os.open(realpath, flags, 0);
gop.value_ptr.putter_frame = async self.kqPutEvents(fd, gop.key_ptr.*, gop.value_ptr.*);
return null;
}
 
fn kqPutEvents(self: *Self, fd: os.fd_t, file_path: []const u8, put: *OsData.Put) void {
global_event_loop.beginOneEvent();
defer {
global_event_loop.finishOneEvent();
// @TODO: Remove this if we force close otherwise
os.close(fd);
}
 
// We need to manually do a bsdWaitKev to access the fflags.
var resume_node = event.Loop.ResumeNode.Basic{
.base = .{
.id = .Basic,
.handle = @frame(),
.overlapped = event.Loop.ResumeNode.overlapped_init,
},
.kev = undefined,
};
 
var kevs = [1]os.Kevent{undefined};
const kev = &kevs[0];
 
while (!put.cancelled) {
kev.* = os.Kevent{
.ident = @as(usize, @intCast(fd)),
.filter = os.EVFILT_VNODE,
.flags = os.EV_ADD | os.EV_ENABLE | os.EV_CLEAR | os.EV_ONESHOT |
os.NOTE_WRITE | os.NOTE_DELETE | os.NOTE_REVOKE,
.fflags = 0,
.data = 0,
.udata = @intFromPtr(&resume_node.base),
};
suspend {
global_event_loop.beginOneEvent();
errdefer global_event_loop.finishOneEvent();
 
const empty_kevs = &[0]os.Kevent{};
_ = os.kevent(global_event_loop.os_data.kqfd, &kevs, empty_kevs, null) catch |err| switch (err) {
error.EventNotFound,
error.ProcessNotFound,
error.Overflow,
=> unreachable,
error.AccessDenied, error.SystemResources => |e| {
self.channel.put(e);
continue;
},
};
}
 
if (kev.flags & os.EV_ERROR != 0) {
self.channel.put(os.unexpectedErrno(os.errno(kev.data)));
continue;
}
 
if (kev.fflags & os.NOTE_DELETE != 0 or kev.fflags & os.NOTE_REVOKE != 0) {
self.channel.put(Self.Event{
.id = .Delete,
.data = put.value,
.dirname = std.fs.path.dirname(file_path) orelse "/",
.basename = std.fs.path.basename(file_path),
});
} else if (kev.fflags & os.NOTE_WRITE != 0) {
self.channel.put(Self.Event{
.id = .CloseWrite,
.data = put.value,
.dirname = std.fs.path.dirname(file_path) orelse "/",
.basename = std.fs.path.basename(file_path),
});
}
}
}
 
fn addFileLinux(self: *Self, file_path: []const u8, value: V) !?V {
const dirname = std.fs.path.dirname(file_path) orelse if (file_path[0] == '/') "/" else ".";
const basename = std.fs.path.basename(file_path);
 
const wd = try os.inotify_add_watch(
self.os_data.inotify_fd,
dirname,
os.linux.IN_CLOSE_WRITE | os.linux.IN_ONLYDIR | os.linux.IN_DELETE | os.linux.IN_EXCL_UNLINK,
);
// wd is either a newly created watch or an existing one.
 
const held = self.os_data.table_lock.acquire();
defer held.release();
 
const gop = try self.os_data.wd_table.getOrPut(self.allocator, wd);
errdefer assert(self.os_data.wd_table.remove(wd));
if (!gop.found_existing) {
gop.value_ptr.* = OsData.Dir{
.dirname = try self.allocator.dupe(u8, dirname),
.file_table = OsData.FileTable.init(self.allocator),
};
}
 
const dir = gop.value_ptr;
const file_table_gop = try dir.file_table.getOrPut(self.allocator, basename);
errdefer assert(dir.file_table.remove(basename));
if (file_table_gop.found_existing) {
const prev_value = file_table_gop.value_ptr.*;
file_table_gop.value_ptr.* = value;
return prev_value;
} else {
file_table_gop.key_ptr.* = try self.allocator.dupe(u8, basename);
file_table_gop.value_ptr.* = value;
return null;
}
}
 
fn addFileWindows(self: *Self, file_path: []const u8, value: V) !?V {
// TODO we might need to convert dirname and basename to canonical file paths ("short"?)
const dirname = std.fs.path.dirname(file_path) orelse if (file_path[0] == '/') "/" else ".";
var dirname_path_space: windows.PathSpace = undefined;
dirname_path_space.len = try std.unicode.utf8ToUtf16Le(&dirname_path_space.data, dirname);
dirname_path_space.data[dirname_path_space.len] = 0;
 
const basename = std.fs.path.basename(file_path);
var basename_path_space: windows.PathSpace = undefined;
basename_path_space.len = try std.unicode.utf8ToUtf16Le(&basename_path_space.data, basename);
basename_path_space.data[basename_path_space.len] = 0;
 
const held = self.os_data.table_lock.acquire();
defer held.release();
 
const gop = try self.os_data.dir_table.getOrPut(self.allocator, dirname);
errdefer assert(self.os_data.dir_table.remove(dirname));
if (gop.found_existing) {
const dir = gop.value_ptr.*;
 
const file_gop = try dir.file_table.getOrPut(self.allocator, basename);
errdefer assert(dir.file_table.remove(basename));
if (file_gop.found_existing) {
const prev_value = file_gop.value_ptr.*;
file_gop.value_ptr.* = value;
return prev_value;
} else {
file_gop.value_ptr.* = value;
file_gop.key_ptr.* = try self.allocator.dupe(u8, basename);
return null;
}
} else {
const dir_handle = try windows.OpenFile(dirname_path_space.span(), .{
.dir = std.fs.cwd().fd,
.access_mask = windows.FILE_LIST_DIRECTORY,
.creation = windows.FILE_OPEN,
.io_mode = .evented,
.filter = .dir_only,
});
errdefer windows.CloseHandle(dir_handle);
 
const dir = try self.allocator.create(OsData.Dir);
errdefer self.allocator.destroy(dir);
 
gop.key_ptr.* = try self.allocator.dupe(u8, dirname);
errdefer self.allocator.free(gop.key_ptr.*);
 
dir.* = OsData.Dir{
.file_table = OsData.FileTable.init(self.allocator),
.putter_frame = undefined,
.dir_handle = dir_handle,
};
gop.value_ptr.* = dir;
try dir.file_table.put(self.allocator, try self.allocator.dupe(u8, basename), value);
dir.putter_frame = async self.windowsDirReader(dir, gop.key_ptr.*);
return null;
}
}
 
fn windowsDirReader(self: *Self, dir: *OsData.Dir, dirname: []const u8) void {
defer os.close(dir.dir_handle);
var resume_node = Loop.ResumeNode.Basic{
.base = Loop.ResumeNode{
.id = .Basic,
.handle = @frame(),
.overlapped = windows.OVERLAPPED{
.Internal = 0,
.InternalHigh = 0,
.DUMMYUNIONNAME = .{
.DUMMYSTRUCTNAME = .{
.Offset = 0,
.OffsetHigh = 0,
},
},
.hEvent = null,
},
},
};
 
var event_buf: [4096]u8 align(@alignOf(windows.FILE_NOTIFY_INFORMATION)) = undefined;
 
global_event_loop.beginOneEvent();
defer global_event_loop.finishOneEvent();
 
while (!self.os_data.cancelled) main_loop: {
suspend {
_ = windows.kernel32.ReadDirectoryChangesW(
dir.dir_handle,
&event_buf,
event_buf.len,
windows.FALSE, // watch subtree
windows.FILE_NOTIFY_CHANGE_FILE_NAME | windows.FILE_NOTIFY_CHANGE_DIR_NAME |
windows.FILE_NOTIFY_CHANGE_ATTRIBUTES | windows.FILE_NOTIFY_CHANGE_SIZE |
windows.FILE_NOTIFY_CHANGE_LAST_WRITE | windows.FILE_NOTIFY_CHANGE_LAST_ACCESS |
windows.FILE_NOTIFY_CHANGE_CREATION | windows.FILE_NOTIFY_CHANGE_SECURITY,
null, // number of bytes transferred (unused for async)
&resume_node.base.overlapped,
null, // completion routine - unused because we use IOCP
);
}
 
var bytes_transferred: windows.DWORD = undefined;
if (windows.kernel32.GetOverlappedResult(
dir.dir_handle,
&resume_node.base.overlapped,
&bytes_transferred,
windows.FALSE,
) == 0) {
const potential_error = windows.kernel32.GetLastError();
const err = switch (potential_error) {
.OPERATION_ABORTED, .IO_INCOMPLETE => err_blk: {
if (self.os_data.cancelled)
break :main_loop
else
break :err_blk windows.unexpectedError(potential_error);
},
else => |err| windows.unexpectedError(err),
};
self.channel.put(err);
} else {
var ptr: [*]u8 = &event_buf;
const end_ptr = ptr + bytes_transferred;
while (@intFromPtr(ptr) < @intFromPtr(end_ptr)) {
const ev = @as(*const windows.FILE_NOTIFY_INFORMATION, @ptrCast(ptr));
const emit = switch (ev.Action) {
windows.FILE_ACTION_REMOVED => WatchEventId.Delete,
windows.FILE_ACTION_MODIFIED => .CloseWrite,
else => null,
};
if (emit) |id| {
const basename_ptr = @as([*]u16, @ptrCast(ptr + @sizeOf(windows.FILE_NOTIFY_INFORMATION)));
const basename_utf16le = basename_ptr[0 .. ev.FileNameLength / 2];
var basename_data: [std.fs.MAX_PATH_BYTES]u8 = undefined;
const basename = basename_data[0 .. std.unicode.utf16leToUtf8(&basename_data, basename_utf16le) catch unreachable];
 
if (dir.file_table.getEntry(basename)) |entry| {
self.channel.put(Event{
.id = id,
.data = entry.value_ptr.*,
.dirname = dirname,
.basename = entry.key_ptr.*,
});
}
}
 
if (ev.NextEntryOffset == 0) break;
ptr = @alignCast(ptr + ev.NextEntryOffset);
}
}
}
}
 
pub fn removeFile(self: *Self, file_path: []const u8) !?V {
switch (builtin.os.tag) {
.linux => {
const dirname = std.fs.path.dirname(file_path) orelse if (file_path[0] == '/') "/" else ".";
const basename = std.fs.path.basename(file_path);
 
const held = self.os_data.table_lock.acquire();
defer held.release();
 
const dir = self.os_data.wd_table.get(dirname) orelse return null;
if (dir.file_table.fetchRemove(basename)) |file_entry| {
self.allocator.free(file_entry.key);
return file_entry.value;
}
return null;
},
.windows => {
const dirname = std.fs.path.dirname(file_path) orelse if (file_path[0] == '/') "/" else ".";
const basename = std.fs.path.basename(file_path);
 
const held = self.os_data.table_lock.acquire();
defer held.release();
 
const dir = self.os_data.dir_table.get(dirname) orelse return null;
if (dir.file_table.fetchRemove(basename)) |file_entry| {
self.allocator.free(file_entry.key);
return file_entry.value;
}
return null;
},
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => {
var realpath_buf: [std.fs.MAX_PATH_BYTES]u8 = undefined;
const realpath = try os.realpath(file_path, &realpath_buf);
 
const held = self.os_data.table_lock.acquire();
defer held.release();
 
const entry = self.os_data.file_table.getEntry(realpath) orelse return null;
entry.value_ptr.cancelled = true;
// @TODO Close the fd here?
await entry.value_ptr.putter_frame;
self.allocator.free(entry.key_ptr.*);
self.allocator.destroy(entry.value_ptr.*);
 
assert(self.os_data.file_table.remove(realpath));
},
else => @compileError("Unsupported OS"),
}
}
 
fn linuxEventPutter(self: *Self) void {
global_event_loop.beginOneEvent();
 
defer {
std.debug.assert(self.os_data.wd_table.count() == 0);
self.os_data.wd_table.deinit(self.allocator);
os.close(self.os_data.inotify_fd);
self.allocator.free(self.channel.buffer_nodes);
self.channel.deinit();
global_event_loop.finishOneEvent();
}
 
var event_buf: [4096]u8 align(@alignOf(os.linux.inotify_event)) = undefined;
 
while (!self.os_data.cancelled) {
const bytes_read = global_event_loop.read(self.os_data.inotify_fd, &event_buf, false) catch unreachable;
 
var ptr: [*]u8 = &event_buf;
const end_ptr = ptr + bytes_read;
while (@intFromPtr(ptr) < @intFromPtr(end_ptr)) {
const ev = @as(*const os.linux.inotify_event, @ptrCast(ptr));
if (ev.mask & os.linux.IN_CLOSE_WRITE == os.linux.IN_CLOSE_WRITE) {
const basename_ptr = ptr + @sizeOf(os.linux.inotify_event);
const basename = std.mem.span(@as([*:0]u8, @ptrCast(basename_ptr)));
 
const dir = &self.os_data.wd_table.get(ev.wd).?;
if (dir.file_table.getEntry(basename)) |file_value| {
self.channel.put(Event{
.id = .CloseWrite,
.data = file_value.value_ptr.*,
.dirname = dir.dirname,
.basename = file_value.key_ptr.*,
});
}
} else if (ev.mask & os.linux.IN_IGNORED == os.linux.IN_IGNORED) {
// Directory watch was removed
const held = self.os_data.table_lock.acquire();
defer held.release();
if (self.os_data.wd_table.fetchRemove(ev.wd)) |wd_entry| {
var file_it = wd_entry.value.file_table.keyIterator();
while (file_it.next()) |file_entry| {
self.allocator.free(file_entry.*);
}
self.allocator.free(wd_entry.value.dirname);
wd_entry.value.file_table.deinit(self.allocator);
}
} else if (ev.mask & os.linux.IN_DELETE == os.linux.IN_DELETE) {
// File or directory was removed or deleted
const basename_ptr = ptr + @sizeOf(os.linux.inotify_event);
const basename = std.mem.span(@as([*:0]u8, @ptrCast(basename_ptr)));
 
const dir = &self.os_data.wd_table.get(ev.wd).?;
if (dir.file_table.getEntry(basename)) |file_value| {
self.channel.put(Event{
.id = .Delete,
.data = file_value.value_ptr.*,
.dirname = dir.dirname,
.basename = file_value.key_ptr.*,
});
}
}
 
ptr = @alignCast(ptr + @sizeOf(os.linux.inotify_event) + ev.len);
}
}
}
};
}
 
const test_tmp_dir = "std_event_fs_test";
 
test "write a file, watch it, write it again, delete it" {
if (!std.io.is_async) return error.SkipZigTest;
// TODO https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
 
try std.fs.cwd().makePath(test_tmp_dir);
defer std.fs.cwd().deleteTree(test_tmp_dir) catch {};
 
return testWriteWatchWriteDelete(std.testing.allocator);
}
 
fn testWriteWatchWriteDelete(allocator: Allocator) !void {
const file_path = try std.fs.path.join(allocator, &[_][]const u8{ test_tmp_dir, "file.txt" });
defer allocator.free(file_path);
 
const contents =
\\line 1
\\line 2
;
const line2_offset = 7;
 
// first just write then read the file
try std.fs.cwd().writeFile(file_path, contents);
 
const read_contents = try std.fs.cwd().readFileAlloc(allocator, file_path, 1024 * 1024);
defer allocator.free(read_contents);
try testing.expectEqualSlices(u8, contents, read_contents);
 
// now watch the file
var watch = try Watch(void).init(allocator, 0);
defer watch.deinit();
 
try testing.expect((try watch.addFile(file_path, {})) == null);
 
var ev = async watch.channel.get();
var ev_consumed = false;
defer if (!ev_consumed) {
_ = await ev;
};
 
// overwrite line 2
const file = try std.fs.cwd().openFile(file_path, .{ .mode = .read_write });
{
defer file.close();
const write_contents = "lorem ipsum";
var iovec = [_]os.iovec_const{.{
.iov_base = write_contents,
.iov_len = write_contents.len,
}};
_ = try file.pwritevAll(&iovec, line2_offset);
}
 
switch ((try await ev).id) {
.CloseWrite => {
ev_consumed = true;
},
.Delete => @panic("wrong event"),
}
 
const contents_updated = try std.fs.cwd().readFileAlloc(allocator, file_path, 1024 * 1024);
defer allocator.free(contents_updated);
 
try testing.expectEqualSlices(u8,
\\line 1
\\lorem ipsum
, contents_updated);
 
ev = async watch.channel.get();
ev_consumed = false;
 
try std.fs.cwd().deleteFile(file_path);
switch ((try await ev).id) {
.Delete => {
ev_consumed = true;
},
.CloseWrite => @panic("wrong event"),
}
}
 
// TODO Test: Add another file watch, remove the old file watch, get an event in the new
 
lib/std/std.zig added: 15, removed: 3975, total 0
@@ -92,9 +92,6 @@ pub const elf = @import("elf.zig");
/// Enum-related metaprogramming helpers.
pub const enums = @import("enums.zig");
 
/// Evented I/O data structures.
pub const event = @import("event.zig");
 
/// First in, first out data structures.
pub const fifo = @import("fifo.zig");