@@ -1,3 +1,4 @@
const IoUring = @This();
const std = @import("../../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
@@ -8,1336 +9,1334 @@ const posix = std.posix;
const linux = os.linux;
const testing = std.testing;
pub const IO_Uring = struct {
fd: os.fd_t = -1,
sq: SubmissionQueue,
cq: CompletionQueue,
flags: u32,
features: u32,
fd: os.fd_t = -1,
sq: SubmissionQueue,
cq: CompletionQueue,
flags: u32,
features: u32,
/// A friendly way to setup an io_uring, with default linux.io_uring_params.
/// `entries` must be a power of two between 1 and 32768, although the kernel will make the final
/// call on how many entries the submission and completion queues will ultimately have,
/// see https://github.com/torvalds/linux/blob/v5.8/fs/io_uring.c#L8027-L8050.
/// Matches the interface of io_uring_queue_init() in liburing.
pub fn init(entries: u16, flags: u32) !IO_Uring {
var params = mem.zeroInit(linux.io_uring_params, .{
.flags = flags,
.sq_thread_idle = 1000,
});
return try IO_Uring.init_params(entries, ¶ms);
/// A friendly way to setup an io_uring, with default linux.io_uring_params.
/// `entries` must be a power of two between 1 and 32768, although the kernel will make the final
/// call on how many entries the submission and completion queues will ultimately have,
/// see https://github.com/torvalds/linux/blob/v5.8/fs/io_uring.c#L8027-L8050.
/// Matches the interface of io_uring_queue_init() in liburing.
pub fn init(entries: u16, flags: u32) !IoUring {
var params = mem.zeroInit(linux.io_uring_params, .{
.flags = flags,
.sq_thread_idle = 1000,
});
return try IoUring.init_params(entries, ¶ms);
}
/// A powerful way to setup an io_uring, if you want to tweak linux.io_uring_params such as submission
/// queue thread cpu affinity or thread idle timeout (the kernel and our default is 1 second).
/// `params` is passed by reference because the kernel needs to modify the parameters.
/// Matches the interface of io_uring_queue_init_params() in liburing.
pub fn init_params(entries: u16, p: *linux.io_uring_params) !IoUring {
if (entries == 0) return error.EntriesZero;
if (!std.math.isPowerOfTwo(entries)) return error.EntriesNotPowerOfTwo;
assert(p.sq_entries == 0);
assert(p.cq_entries == 0 or p.flags & linux.IORING_SETUP_CQSIZE != 0);
assert(p.features == 0);
assert(p.wq_fd == 0 or p.flags & linux.IORING_SETUP_ATTACH_WQ != 0);
assert(p.resv[0] == 0);
assert(p.resv[1] == 0);
assert(p.resv[2] == 0);
const res = linux.io_uring_setup(entries, p);
switch (linux.getErrno(res)) {
.SUCCESS => {},
.FAULT => return error.ParamsOutsideAccessibleAddressSpace,
// The resv array contains non-zero data, p.flags contains an unsupported flag,
// entries out of bounds, IORING_SETUP_SQ_AFF was specified without IORING_SETUP_SQPOLL,
// or IORING_SETUP_CQSIZE was specified but linux.io_uring_params.cq_entries was invalid:
.INVAL => return error.ArgumentsInvalid,
.MFILE => return error.ProcessFdQuotaExceeded,
.NFILE => return error.SystemFdQuotaExceeded,
.NOMEM => return error.SystemResources,
// IORING_SETUP_SQPOLL was specified but effective user ID lacks sufficient privileges,
// or a container seccomp policy prohibits io_uring syscalls:
.PERM => return error.PermissionDenied,
.NOSYS => return error.SystemOutdated,
else => |errno| return os.unexpectedErrno(errno),
}
const fd = @as(os.fd_t, @intCast(res));
assert(fd >= 0);
errdefer os.close(fd);
// Kernel versions 5.4 and up use only one mmap() for the submission and completion queues.
// This is not an optional feature for us... if the kernel does it, we have to do it.
// The thinking on this by the kernel developers was that both the submission and the
// completion queue rings have sizes just over a power of two, but the submission queue ring
// is significantly smaller with u32 slots. By bundling both in a single mmap, the kernel
// gets the submission queue ring for free.
// See https://patchwork.kernel.org/patch/11115257 for the kernel patch.
// We do not support the double mmap() done before 5.4, because we want to keep the
// init/deinit mmap paths simple and because io_uring has had many bug fixes even since 5.4.
if ((p.features & linux.IORING_FEAT_SINGLE_MMAP) == 0) {
return error.SystemOutdated;
}
/// A powerful way to setup an io_uring, if you want to tweak linux.io_uring_params such as submission
/// queue thread cpu affinity or thread idle timeout (the kernel and our default is 1 second).
/// `params` is passed by reference because the kernel needs to modify the parameters.
/// Matches the interface of io_uring_queue_init_params() in liburing.
pub fn init_params(entries: u16, p: *linux.io_uring_params) !IO_Uring {
if (entries == 0) return error.EntriesZero;
if (!std.math.isPowerOfTwo(entries)) return error.EntriesNotPowerOfTwo;
// Check that the kernel has actually set params and that "impossible is nothing".
assert(p.sq_entries != 0);
assert(p.cq_entries != 0);
assert(p.cq_entries >= p.sq_entries);
assert(p.sq_entries == 0);
assert(p.cq_entries == 0 or p.flags & linux.IORING_SETUP_CQSIZE != 0);
assert(p.features == 0);
assert(p.wq_fd == 0 or p.flags & linux.IORING_SETUP_ATTACH_WQ != 0);
assert(p.resv[0] == 0);
assert(p.resv[1] == 0);
assert(p.resv[2] == 0);
// From here on, we only need to read from params, so pass `p` by value as immutable.
// The completion queue shares the mmap with the submission queue, so pass `sq` there too.
var sq = try SubmissionQueue.init(fd, p.*);
errdefer sq.deinit();
var cq = try CompletionQueue.init(fd, p.*, sq);
errdefer cq.deinit();
const res = linux.io_uring_setup(entries, p);
switch (linux.getErrno(res)) {
.SUCCESS => {},
.FAULT => return error.ParamsOutsideAccessibleAddressSpace,
// The resv array contains non-zero data, p.flags contains an unsupported flag,
// entries out of bounds, IORING_SETUP_SQ_AFF was specified without IORING_SETUP_SQPOLL,
// or IORING_SETUP_CQSIZE was specified but linux.io_uring_params.cq_entries was invalid:
.INVAL => return error.ArgumentsInvalid,
.MFILE => return error.ProcessFdQuotaExceeded,
.NFILE => return error.SystemFdQuotaExceeded,
.NOMEM => return error.SystemResources,
// IORING_SETUP_SQPOLL was specified but effective user ID lacks sufficient privileges,
// or a container seccomp policy prohibits io_uring syscalls:
.PERM => return error.PermissionDenied,
.NOSYS => return error.SystemOutdated,
else => |errno| return os.unexpectedErrno(errno),
}
const fd = @as(os.fd_t, @intCast(res));
assert(fd >= 0);
errdefer os.close(fd);
// Check that our starting state is as we expect.
assert(sq.head.* == 0);
assert(sq.tail.* == 0);
assert(sq.mask == p.sq_entries - 1);
// Allow flags.* to be non-zero, since the kernel may set IORING_SQ_NEED_WAKEUP at any time.
assert(sq.dropped.* == 0);
assert(sq.array.len == p.sq_entries);
assert(sq.sqes.len == p.sq_entries);
assert(sq.sqe_head == 0);
assert(sq.sqe_tail == 0);
// Kernel versions 5.4 and up use only one mmap() for the submission and completion queues.
// This is not an optional feature for us... if the kernel does it, we have to do it.
// The thinking on this by the kernel developers was that both the submission and the
// completion queue rings have sizes just over a power of two, but the submission queue ring
// is significantly smaller with u32 slots. By bundling both in a single mmap, the kernel
// gets the submission queue ring for free.
// See https://patchwork.kernel.org/patch/11115257 for the kernel patch.
// We do not support the double mmap() done before 5.4, because we want to keep the
// init/deinit mmap paths simple and because io_uring has had many bug fixes even since 5.4.
if ((p.features & linux.IORING_FEAT_SINGLE_MMAP) == 0) {
return error.SystemOutdated;
}
assert(cq.head.* == 0);
assert(cq.tail.* == 0);
assert(cq.mask == p.cq_entries - 1);
assert(cq.overflow.* == 0);
assert(cq.cqes.len == p.cq_entries);
// Check that the kernel has actually set params and that "impossible is nothing".
assert(p.sq_entries != 0);
assert(p.cq_entries != 0);
assert(p.cq_entries >= p.sq_entries);
// From here on, we only need to read from params, so pass `p` by value as immutable.
// The completion queue shares the mmap with the submission queue, so pass `sq` there too.
var sq = try SubmissionQueue.init(fd, p.*);
errdefer sq.deinit();
var cq = try CompletionQueue.init(fd, p.*, sq);
errdefer cq.deinit();
// Check that our starting state is as we expect.
assert(sq.head.* == 0);
assert(sq.tail.* == 0);
assert(sq.mask == p.sq_entries - 1);
// Allow flags.* to be non-zero, since the kernel may set IORING_SQ_NEED_WAKEUP at any time.
assert(sq.dropped.* == 0);
assert(sq.array.len == p.sq_entries);
assert(sq.sqes.len == p.sq_entries);
assert(sq.sqe_head == 0);
assert(sq.sqe_tail == 0);
assert(cq.head.* == 0);
assert(cq.tail.* == 0);
assert(cq.mask == p.cq_entries - 1);
assert(cq.overflow.* == 0);
assert(cq.cqes.len == p.cq_entries);
return IO_Uring{
.fd = fd,
.sq = sq,
.cq = cq,
.flags = p.flags,
.features = p.features,
};
}
pub fn deinit(self: *IO_Uring) void {
assert(self.fd >= 0);
// The mmaps depend on the fd, so the order of these calls is important:
self.cq.deinit();
self.sq.deinit();
os.close(self.fd);
self.fd = -1;
}
/// Returns a pointer to a vacant SQE, or an error if the submission queue is full.
/// We follow the implementation (and atomics) of liburing's `io_uring_get_sqe()` exactly.
/// However, instead of a null we return an error to force safe handling.
/// Any situation where the submission queue is full tends more towards a control flow error,
/// and the null return in liburing is more a C idiom than anything else, for lack of a better
/// alternative. In Zig, we have first-class error handling... so let's use it.
/// Matches the implementation of io_uring_get_sqe() in liburing.
pub fn get_sqe(self: *IO_Uring) !*linux.io_uring_sqe {
const head = @atomicLoad(u32, self.sq.head, .Acquire);
// Remember that these head and tail offsets wrap around every four billion operations.
// We must therefore use wrapping addition and subtraction to avoid a runtime crash.
const next = self.sq.sqe_tail +% 1;
if (next -% head > self.sq.sqes.len) return error.SubmissionQueueFull;
const sqe = &self.sq.sqes[self.sq.sqe_tail & self.sq.mask];
self.sq.sqe_tail = next;
return sqe;
}
/// Submits the SQEs acquired via get_sqe() to the kernel. You can call this once after you have
/// called get_sqe() multiple times to setup multiple I/O requests.
/// Returns the number of SQEs submitted, if not used alongside IORING_SETUP_SQPOLL.
/// If the io_uring instance is uses IORING_SETUP_SQPOLL, the value returned on success is not
/// guaranteed to match the amount of actually submitted sqes during this call. A value higher
/// or lower, including 0, may be returned.
/// Matches the implementation of io_uring_submit() in liburing.
pub fn submit(self: *IO_Uring) !u32 {
return self.submit_and_wait(0);
}
/// Like submit(), but allows waiting for events as well.
/// Returns the number of SQEs submitted.
/// Matches the implementation of io_uring_submit_and_wait() in liburing.
pub fn submit_and_wait(self: *IO_Uring, wait_nr: u32) !u32 {
const submitted = self.flush_sq();
var flags: u32 = 0;
if (self.sq_ring_needs_enter(&flags) or wait_nr > 0) {
if (wait_nr > 0 or (self.flags & linux.IORING_SETUP_IOPOLL) != 0) {
flags |= linux.IORING_ENTER_GETEVENTS;
}
return try self.enter(submitted, wait_nr, flags);
}
return submitted;
}
/// Tell the kernel we have submitted SQEs and/or want to wait for CQEs.
/// Returns the number of SQEs submitted.
pub fn enter(self: *IO_Uring, to_submit: u32, min_complete: u32, flags: u32) !u32 {
assert(self.fd >= 0);
const res = linux.io_uring_enter(self.fd, to_submit, min_complete, flags, null);
switch (linux.getErrno(res)) {
.SUCCESS => {},
// The kernel was unable to allocate memory or ran out of resources for the request.
// The application should wait for some completions and try again:
.AGAIN => return error.SystemResources,
// The SQE `fd` is invalid, or IOSQE_FIXED_FILE was set but no files were registered:
.BADF => return error.FileDescriptorInvalid,
// The file descriptor is valid, but the ring is not in the right state.
// See io_uring_register(2) for how to enable the ring.
.BADFD => return error.FileDescriptorInBadState,
// The application attempted to overcommit the number of requests it can have pending.
// The application should wait for some completions and try again:
.BUSY => return error.CompletionQueueOvercommitted,
// The SQE is invalid, or valid but the ring was setup with IORING_SETUP_IOPOLL:
.INVAL => return error.SubmissionQueueEntryInvalid,
// The buffer is outside the process' accessible address space, or IORING_OP_READ_FIXED
// or IORING_OP_WRITE_FIXED was specified but no buffers were registered, or the range
// described by `addr` and `len` is not within the buffer registered at `buf_index`:
.FAULT => return error.BufferInvalid,
.NXIO => return error.RingShuttingDown,
// The kernel believes our `self.fd` does not refer to an io_uring instance,
// or the opcode is valid but not supported by this kernel (more likely):
.OPNOTSUPP => return error.OpcodeNotSupported,
// The operation was interrupted by a delivery of a signal before it could complete.
// This can happen while waiting for events with IORING_ENTER_GETEVENTS:
.INTR => return error.SignalInterrupt,
else => |errno| return os.unexpectedErrno(errno),
}
return @as(u32, @intCast(res));
}
/// Sync internal state with kernel ring state on the SQ side.
/// Returns the number of all pending events in the SQ ring, for the shared ring.
/// This return value includes previously flushed SQEs, as per liburing.
/// The rationale is to suggest that an io_uring_enter() call is needed rather than not.
/// Matches the implementation of __io_uring_flush_sq() in liburing.
pub fn flush_sq(self: *IO_Uring) u32 {
if (self.sq.sqe_head != self.sq.sqe_tail) {
// Fill in SQEs that we have queued up, adding them to the kernel ring.
const to_submit = self.sq.sqe_tail -% self.sq.sqe_head;
var tail = self.sq.tail.*;
var i: usize = 0;
while (i < to_submit) : (i += 1) {
self.sq.array[tail & self.sq.mask] = self.sq.sqe_head & self.sq.mask;
tail +%= 1;
self.sq.sqe_head +%= 1;
}
// Ensure that the kernel can actually see the SQE updates when it sees the tail update.
@atomicStore(u32, self.sq.tail, tail, .Release);
}
return self.sq_ready();
}
/// Returns true if we are not using an SQ thread (thus nobody submits but us),
/// or if IORING_SQ_NEED_WAKEUP is set and the SQ thread must be explicitly awakened.
/// For the latter case, we set the SQ thread wakeup flag.
/// Matches the implementation of sq_ring_needs_enter() in liburing.
pub fn sq_ring_needs_enter(self: *IO_Uring, flags: *u32) bool {
assert(flags.* == 0);
if ((self.flags & linux.IORING_SETUP_SQPOLL) == 0) return true;
if ((@atomicLoad(u32, self.sq.flags, .Unordered) & linux.IORING_SQ_NEED_WAKEUP) != 0) {
flags.* |= linux.IORING_ENTER_SQ_WAKEUP;
return true;
}
return false;
}
/// Returns the number of flushed and unflushed SQEs pending in the submission queue.
/// In other words, this is the number of SQEs in the submission queue, i.e. its length.
/// These are SQEs that the kernel is yet to consume.
/// Matches the implementation of io_uring_sq_ready in liburing.
pub fn sq_ready(self: *IO_Uring) u32 {
// Always use the shared ring state (i.e. head and not sqe_head) to avoid going out of sync,
// see https://github.com/axboe/liburing/issues/92.
return self.sq.sqe_tail -% @atomicLoad(u32, self.sq.head, .Acquire);
}
/// Returns the number of CQEs in the completion queue, i.e. its length.
/// These are CQEs that the application is yet to consume.
/// Matches the implementation of io_uring_cq_ready in liburing.
pub fn cq_ready(self: *IO_Uring) u32 {
return @atomicLoad(u32, self.cq.tail, .Acquire) -% self.cq.head.*;
}
/// Copies as many CQEs as are ready, and that can fit into the destination `cqes` slice.
/// If none are available, enters into the kernel to wait for at most `wait_nr` CQEs.
/// Returns the number of CQEs copied, advancing the CQ ring.
/// Provides all the wait/peek methods found in liburing, but with batching and a single method.
/// The rationale for copying CQEs rather than copying pointers is that pointers are 8 bytes
/// whereas CQEs are not much more at only 16 bytes, and this provides a safer faster interface.
/// Safer, because you no longer need to call cqe_seen(), avoiding idempotency bugs.
/// Faster, because we can now amortize the atomic store release to `cq.head` across the batch.
/// See https://github.com/axboe/liburing/issues/103#issuecomment-686665007.
/// Matches the implementation of io_uring_peek_batch_cqe() in liburing, but supports waiting.
pub fn copy_cqes(self: *IO_Uring, cqes: []linux.io_uring_cqe, wait_nr: u32) !u32 {
const count = self.copy_cqes_ready(cqes);
if (count > 0) return count;
if (self.cq_ring_needs_flush() or wait_nr > 0) {
_ = try self.enter(0, wait_nr, linux.IORING_ENTER_GETEVENTS);
return self.copy_cqes_ready(cqes);
}
return 0;
}
fn copy_cqes_ready(self: *IO_Uring, cqes: []linux.io_uring_cqe) u32 {
const ready = self.cq_ready();
const count = @min(cqes.len, ready);
const head = self.cq.head.* & self.cq.mask;
const tail = (self.cq.head.* +% count) & self.cq.mask;
if (head <= tail) {
// head behind tail -> no wrapping
@memcpy(cqes[0..count], self.cq.cqes[head..tail]);
} else {
// head in front of tail -> buffer wraps
const two_copies_required: bool = self.cq.cqes.len - head < count;
const amount_to_copy_in_first = if (two_copies_required) self.cq.cqes.len - head else count;
@memcpy(cqes[0..amount_to_copy_in_first], self.cq.cqes[head .. head + amount_to_copy_in_first]);
if (two_copies_required) {
@memcpy(cqes[amount_to_copy_in_first..count], self.cq.cqes[0..tail]);
}
}
self.cq_advance(count);
return count;
}
/// Returns a copy of an I/O completion, waiting for it if necessary, and advancing the CQ ring.
/// A convenience method for `copy_cqes()` for when you don't need to batch or peek.
pub fn copy_cqe(ring: *IO_Uring) !linux.io_uring_cqe {
var cqes: [1]linux.io_uring_cqe = undefined;
while (true) {
const count = try ring.copy_cqes(&cqes, 1);
if (count > 0) return cqes[0];
}
}
/// Matches the implementation of cq_ring_needs_flush() in liburing.
pub fn cq_ring_needs_flush(self: *IO_Uring) bool {
return (@atomicLoad(u32, self.sq.flags, .Unordered) & linux.IORING_SQ_CQ_OVERFLOW) != 0;
}
/// For advanced use cases only that implement custom completion queue methods.
/// If you use copy_cqes() or copy_cqe() you must not call cqe_seen() or cq_advance().
/// Must be called exactly once after a zero-copy CQE has been processed by your application.
/// Not idempotent, calling more than once will result in other CQEs being lost.
/// Matches the implementation of cqe_seen() in liburing.
pub fn cqe_seen(self: *IO_Uring, cqe: *linux.io_uring_cqe) void {
_ = cqe;
self.cq_advance(1);
}
/// For advanced use cases only that implement custom completion queue methods.
/// Matches the implementation of cq_advance() in liburing.
pub fn cq_advance(self: *IO_Uring, count: u32) void {
if (count > 0) {
// Ensure the kernel only sees the new head value after the CQEs have been read.
@atomicStore(u32, self.cq.head, self.cq.head.* +% count, .Release);
}
}
/// Queues (but does not submit) an SQE to perform an `fsync(2)`.
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
/// For example, for `fdatasync()` you can set `IORING_FSYNC_DATASYNC` in the SQE's `rw_flags`.
/// N.B. While SQEs are initiated in the order in which they appear in the submission queue,
/// operations execute in parallel and completions are unordered. Therefore, an application that
/// submits a write followed by an fsync in the submission queue cannot expect the fsync to
/// apply to the write, since the fsync may complete before the write is issued to the disk.
/// You should preferably use `link_with_next_sqe()` on a write's SQE to link it with an fsync,
/// or else insert a full write barrier using `drain_previous_sqes()` when queueing an fsync.
pub fn fsync(self: *IO_Uring, user_data: u64, fd: os.fd_t, flags: u32) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_fsync(sqe, fd, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a no-op.
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
/// A no-op is more useful than may appear at first glance.
/// For example, you could call `drain_previous_sqes()` on the returned SQE, to use the no-op to
/// know when the ring is idle before acting on a kill signal.
pub fn nop(self: *IO_Uring, user_data: u64) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_nop(sqe);
sqe.user_data = user_data;
return sqe;
}
/// Used to select how the read should be handled.
pub const ReadBuffer = union(enum) {
/// io_uring will read directly into this buffer
buffer: []u8,
/// io_uring will read directly into these buffers using readv.
iovecs: []const os.iovec,
/// io_uring will select a buffer that has previously been provided with `provide_buffers`.
/// The buffer group reference by `group_id` must contain at least one buffer for the read to work.
/// `len` controls the number of bytes to read into the selected buffer.
buffer_selection: struct {
group_id: u16,
len: usize,
},
return IoUring{
.fd = fd,
.sq = sq,
.cq = cq,
.flags = p.flags,
.features = p.features,
};
}
/// Queues (but does not submit) an SQE to perform a `read(2)` or `preadv(2)` depending on the buffer type.
/// * Reading into a `ReadBuffer.buffer` uses `read(2)`
/// * Reading into a `ReadBuffer.iovecs` uses `preadv(2)`
/// If you want to do a `preadv2(2)` then set `rw_flags` on the returned SQE. See https://man7.org/linux/man-pages/man2/preadv2.2.html
///
/// Returns a pointer to the SQE.
pub fn read(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
buffer: ReadBuffer,
offset: u64,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
switch (buffer) {
.buffer => |slice| io_uring_prep_read(sqe, fd, slice, offset),
.iovecs => |vecs| io_uring_prep_readv(sqe, fd, vecs, offset),
.buffer_selection => |selection| {
io_uring_prep_rw(.READ, sqe, fd, 0, selection.len, offset);
sqe.flags |= linux.IOSQE_BUFFER_SELECT;
sqe.buf_index = selection.group_id;
},
pub fn deinit(self: *IoUring) void {
assert(self.fd >= 0);
// The mmaps depend on the fd, so the order of these calls is important:
self.cq.deinit();
self.sq.deinit();
os.close(self.fd);
self.fd = -1;
}
/// Returns a pointer to a vacant SQE, or an error if the submission queue is full.
/// We follow the implementation (and atomics) of liburing's `io_uring_get_sqe()` exactly.
/// However, instead of a null we return an error to force safe handling.
/// Any situation where the submission queue is full tends more towards a control flow error,
/// and the null return in liburing is more a C idiom than anything else, for lack of a better
/// alternative. In Zig, we have first-class error handling... so let's use it.
/// Matches the implementation of io_uring_get_sqe() in liburing.
pub fn get_sqe(self: *IoUring) !*linux.io_uring_sqe {
const head = @atomicLoad(u32, self.sq.head, .Acquire);
// Remember that these head and tail offsets wrap around every four billion operations.
// We must therefore use wrapping addition and subtraction to avoid a runtime crash.
const next = self.sq.sqe_tail +% 1;
if (next -% head > self.sq.sqes.len) return error.SubmissionQueueFull;
const sqe = &self.sq.sqes[self.sq.sqe_tail & self.sq.mask];
self.sq.sqe_tail = next;
return sqe;
}
/// Submits the SQEs acquired via get_sqe() to the kernel. You can call this once after you have
/// called get_sqe() multiple times to setup multiple I/O requests.
/// Returns the number of SQEs submitted, if not used alongside IORING_SETUP_SQPOLL.
/// If the io_uring instance is uses IORING_SETUP_SQPOLL, the value returned on success is not
/// guaranteed to match the amount of actually submitted sqes during this call. A value higher
/// or lower, including 0, may be returned.
/// Matches the implementation of io_uring_submit() in liburing.
pub fn submit(self: *IoUring) !u32 {
return self.submit_and_wait(0);
}
/// Like submit(), but allows waiting for events as well.
/// Returns the number of SQEs submitted.
/// Matches the implementation of io_uring_submit_and_wait() in liburing.
pub fn submit_and_wait(self: *IoUring, wait_nr: u32) !u32 {
const submitted = self.flush_sq();
var flags: u32 = 0;
if (self.sq_ring_needs_enter(&flags) or wait_nr > 0) {
if (wait_nr > 0 or (self.flags & linux.IORING_SETUP_IOPOLL) != 0) {
flags |= linux.IORING_ENTER_GETEVENTS;
}
sqe.user_data = user_data;
return sqe;
return try self.enter(submitted, wait_nr, flags);
}
return submitted;
}
/// Queues (but does not submit) an SQE to perform a `write(2)`.
/// Returns a pointer to the SQE.
pub fn write(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
buffer: []const u8,
offset: u64,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_write(sqe, fd, buffer, offset);
sqe.user_data = user_data;
return sqe;
/// Tell the kernel we have submitted SQEs and/or want to wait for CQEs.
/// Returns the number of SQEs submitted.
pub fn enter(self: *IoUring, to_submit: u32, min_complete: u32, flags: u32) !u32 {
assert(self.fd >= 0);
const res = linux.io_uring_enter(self.fd, to_submit, min_complete, flags, null);
switch (linux.getErrno(res)) {
.SUCCESS => {},
// The kernel was unable to allocate memory or ran out of resources for the request.
// The application should wait for some completions and try again:
.AGAIN => return error.SystemResources,
// The SQE `fd` is invalid, or IOSQE_FIXED_FILE was set but no files were registered:
.BADF => return error.FileDescriptorInvalid,
// The file descriptor is valid, but the ring is not in the right state.
// See io_uring_register(2) for how to enable the ring.
.BADFD => return error.FileDescriptorInBadState,
// The application attempted to overcommit the number of requests it can have pending.
// The application should wait for some completions and try again:
.BUSY => return error.CompletionQueueOvercommitted,
// The SQE is invalid, or valid but the ring was setup with IORING_SETUP_IOPOLL:
.INVAL => return error.SubmissionQueueEntryInvalid,
// The buffer is outside the process' accessible address space, or IORING_OP_READ_FIXED
// or IORING_OP_WRITE_FIXED was specified but no buffers were registered, or the range
// described by `addr` and `len` is not within the buffer registered at `buf_index`:
.FAULT => return error.BufferInvalid,
.NXIO => return error.RingShuttingDown,
// The kernel believes our `self.fd` does not refer to an io_uring instance,
// or the opcode is valid but not supported by this kernel (more likely):
.OPNOTSUPP => return error.OpcodeNotSupported,
// The operation was interrupted by a delivery of a signal before it could complete.
// This can happen while waiting for events with IORING_ENTER_GETEVENTS:
.INTR => return error.SignalInterrupt,
else => |errno| return os.unexpectedErrno(errno),
}
return @as(u32, @intCast(res));
}
/// Queues (but does not submit) an SQE to perform a `splice(2)`
/// Either `fd_in` or `fd_out` must be a pipe.
/// If `fd_in` refers to a pipe, `off_in` is ignored and must be set to std.math.maxInt(u64).
/// If `fd_in` does not refer to a pipe and `off_in` is maxInt(u64), then `len` are read
/// from `fd_in` starting from the file offset, which is incremented by the number of bytes read.
/// If `fd_in` does not refer to a pipe and `off_in` is not maxInt(u64), then the starting offset of `fd_in` will be `off_in`.
/// This splice operation can be used to implement sendfile by splicing to an intermediate pipe first,
/// then splice to the final destination. In fact, the implementation of sendfile in kernel uses splice internally.
///
/// NOTE that even if fd_in or fd_out refers to a pipe, the splice operation can still fail with EINVAL if one of the
/// fd doesn't explicitly support splice peration, e.g. reading from terminal is unsupported from kernel 5.7 to 5.11.
/// See https://github.com/axboe/liburing/issues/291
///
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
pub fn splice(self: *IO_Uring, user_data: u64, fd_in: os.fd_t, off_in: u64, fd_out: os.fd_t, off_out: u64, len: usize) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_splice(sqe, fd_in, off_in, fd_out, off_out, len);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a IORING_OP_READ_FIXED.
/// The `buffer` provided must be registered with the kernel by calling `register_buffers` first.
/// The `buffer_index` must be the same as its index in the array provided to `register_buffers`.
///
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
pub fn read_fixed(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
buffer: *os.iovec,
offset: u64,
buffer_index: u16,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_read_fixed(sqe, fd, buffer, offset, buffer_index);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `pwritev()`.
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
/// For example, if you want to do a `pwritev2()` then set `rw_flags` on the returned SQE.
/// See https://linux.die.net/man/2/pwritev.
pub fn writev(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
iovecs: []const os.iovec_const,
offset: u64,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_writev(sqe, fd, iovecs, offset);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a IORING_OP_WRITE_FIXED.
/// The `buffer` provided must be registered with the kernel by calling `register_buffers` first.
/// The `buffer_index` must be the same as its index in the array provided to `register_buffers`.
///
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
pub fn write_fixed(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
buffer: *os.iovec,
offset: u64,
buffer_index: u16,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_write_fixed(sqe, fd, buffer, offset, buffer_index);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform an `accept4(2)` on a socket.
/// Returns a pointer to the SQE.
/// Available since 5.5
pub fn accept(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_accept(sqe, fd, addr, addrlen, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues an multishot accept on a socket.
///
/// Multishot variant allows an application to issue a single accept request,
/// which will repeatedly trigger a CQE when a connection request comes in.
/// While IORING_CQE_F_MORE flag is set in CQE flags accept will generate
/// further CQEs.
///
/// Available since 5.19
pub fn accept_multishot(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_multishot_accept(sqe, fd, addr, addrlen, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues an accept using direct (registered) file descriptors.
///
/// To use an accept direct variant, the application must first have registered
/// a file table (with register_files). An unused table index will be
/// dynamically chosen and returned in the CQE res field.
///
/// After creation, they can be used by setting IOSQE_FIXED_FILE in the SQE
/// flags member, and setting the SQE fd field to the direct descriptor value
/// rather than the regular file descriptor.
///
/// Available since 5.19
pub fn accept_direct(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_accept_direct(sqe, fd, addr, addrlen, flags, linux.IORING_FILE_INDEX_ALLOC);
sqe.user_data = user_data;
return sqe;
}
/// Queues an multishot accept using direct (registered) file descriptors.
/// Available since 5.19
pub fn accept_multishot_direct(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_multishot_accept_direct(sqe, fd, addr, addrlen, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queue (but does not submit) an SQE to perform a `connect(2)` on a socket.
/// Returns a pointer to the SQE.
pub fn connect(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
addr: *const os.sockaddr,
addrlen: os.socklen_t,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_connect(sqe, fd, addr, addrlen);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `epoll_ctl(2)`.
/// Returns a pointer to the SQE.
pub fn epoll_ctl(
self: *IO_Uring,
user_data: u64,
epfd: os.fd_t,
fd: os.fd_t,
op: u32,
ev: ?*linux.epoll_event,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_epoll_ctl(sqe, epfd, fd, op, ev);
sqe.user_data = user_data;
return sqe;
}
/// Used to select how the recv call should be handled.
pub const RecvBuffer = union(enum) {
/// io_uring will recv directly into this buffer
buffer: []u8,
/// io_uring will select a buffer that has previously been provided with `provide_buffers`.
/// The buffer group referenced by `group_id` must contain at least one buffer for the recv call to work.
/// `len` controls the number of bytes to read into the selected buffer.
buffer_selection: struct {
group_id: u16,
len: usize,
},
};
/// Queues (but does not submit) an SQE to perform a `recv(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.6
pub fn recv(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
buffer: RecvBuffer,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
switch (buffer) {
.buffer => |slice| io_uring_prep_recv(sqe, fd, slice, flags),
.buffer_selection => |selection| {
io_uring_prep_rw(.RECV, sqe, fd, 0, selection.len, 0);
sqe.rw_flags = flags;
sqe.flags |= linux.IOSQE_BUFFER_SELECT;
sqe.buf_index = selection.group_id;
},
/// Sync internal state with kernel ring state on the SQ side.
/// Returns the number of all pending events in the SQ ring, for the shared ring.
/// This return value includes previously flushed SQEs, as per liburing.
/// The rationale is to suggest that an io_uring_enter() call is needed rather than not.
/// Matches the implementation of __io_uring_flush_sq() in liburing.
pub fn flush_sq(self: *IoUring) u32 {
if (self.sq.sqe_head != self.sq.sqe_tail) {
// Fill in SQEs that we have queued up, adding them to the kernel ring.
const to_submit = self.sq.sqe_tail -% self.sq.sqe_head;
var tail = self.sq.tail.*;
var i: usize = 0;
while (i < to_submit) : (i += 1) {
self.sq.array[tail & self.sq.mask] = self.sq.sqe_head & self.sq.mask;
tail +%= 1;
self.sq.sqe_head +%= 1;
}
sqe.user_data = user_data;
return sqe;
// Ensure that the kernel can actually see the SQE updates when it sees the tail update.
@atomicStore(u32, self.sq.tail, tail, .Release);
}
return self.sq_ready();
}
/// Queues (but does not submit) an SQE to perform a `send(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.6
pub fn send(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
buffer: []const u8,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_send(sqe, fd, buffer, flags);
sqe.user_data = user_data;
return sqe;
/// Returns true if we are not using an SQ thread (thus nobody submits but us),
/// or if IORING_SQ_NEED_WAKEUP is set and the SQ thread must be explicitly awakened.
/// For the latter case, we set the SQ thread wakeup flag.
/// Matches the implementation of sq_ring_needs_enter() in liburing.
pub fn sq_ring_needs_enter(self: *IoUring, flags: *u32) bool {
assert(flags.* == 0);
if ((self.flags & linux.IORING_SETUP_SQPOLL) == 0) return true;
if ((@atomicLoad(u32, self.sq.flags, .Unordered) & linux.IORING_SQ_NEED_WAKEUP) != 0) {
flags.* |= linux.IORING_ENTER_SQ_WAKEUP;
return true;
}
return false;
}
/// Queues (but does not submit) an SQE to perform an async zerocopy `send(2)`.
///
/// This operation will most likely produce two CQEs. The flags field of the
/// first cqe may likely contain IORING_CQE_F_MORE, which means that there will
/// be a second cqe with the user_data field set to the same value. The user
/// must not modify the data buffer until the notification is posted. The first
/// cqe follows the usual rules and so its res field will contain the number of
/// bytes sent or a negative error code. The notification's res field will be
/// set to zero and the flags field will contain IORING_CQE_F_NOTIF. The two
/// step model is needed because the kernel may hold on to buffers for a long
/// time, e.g. waiting for a TCP ACK. Notifications responsible for controlling
/// the lifetime of the buffers. Even errored requests may generate a
/// notification.
///
/// Available since 6.0
pub fn send_zc(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
buffer: []const u8,
send_flags: u32,
zc_flags: u16,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_send_zc(sqe, fd, buffer, send_flags, zc_flags);
sqe.user_data = user_data;
return sqe;
/// Returns the number of flushed and unflushed SQEs pending in the submission queue.
/// In other words, this is the number of SQEs in the submission queue, i.e. its length.
/// These are SQEs that the kernel is yet to consume.
/// Matches the implementation of io_uring_sq_ready in liburing.
pub fn sq_ready(self: *IoUring) u32 {
// Always use the shared ring state (i.e. head and not sqe_head) to avoid going out of sync,
// see https://github.com/axboe/liburing/issues/92.
return self.sq.sqe_tail -% @atomicLoad(u32, self.sq.head, .Acquire);
}
/// Returns the number of CQEs in the completion queue, i.e. its length.
/// These are CQEs that the application is yet to consume.
/// Matches the implementation of io_uring_cq_ready in liburing.
pub fn cq_ready(self: *IoUring) u32 {
return @atomicLoad(u32, self.cq.tail, .Acquire) -% self.cq.head.*;
}
/// Copies as many CQEs as are ready, and that can fit into the destination `cqes` slice.
/// If none are available, enters into the kernel to wait for at most `wait_nr` CQEs.
/// Returns the number of CQEs copied, advancing the CQ ring.
/// Provides all the wait/peek methods found in liburing, but with batching and a single method.
/// The rationale for copying CQEs rather than copying pointers is that pointers are 8 bytes
/// whereas CQEs are not much more at only 16 bytes, and this provides a safer faster interface.
/// Safer, because you no longer need to call cqe_seen(), avoiding idempotency bugs.
/// Faster, because we can now amortize the atomic store release to `cq.head` across the batch.
/// See https://github.com/axboe/liburing/issues/103#issuecomment-686665007.
/// Matches the implementation of io_uring_peek_batch_cqe() in liburing, but supports waiting.
pub fn copy_cqes(self: *IoUring, cqes: []linux.io_uring_cqe, wait_nr: u32) !u32 {
const count = self.copy_cqes_ready(cqes);
if (count > 0) return count;
if (self.cq_ring_needs_flush() or wait_nr > 0) {
_ = try self.enter(0, wait_nr, linux.IORING_ENTER_GETEVENTS);
return self.copy_cqes_ready(cqes);
}
return 0;
}
/// Queues (but does not submit) an SQE to perform an async zerocopy `send(2)`.
/// Returns a pointer to the SQE.
/// Available since 6.0
pub fn send_zc_fixed(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
buffer: []const u8,
send_flags: u32,
zc_flags: u16,
buf_index: u16,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_send_zc_fixed(sqe, fd, buffer, send_flags, zc_flags, buf_index);
sqe.user_data = user_data;
return sqe;
}
fn copy_cqes_ready(self: *IoUring, cqes: []linux.io_uring_cqe) u32 {
const ready = self.cq_ready();
const count = @min(cqes.len, ready);
const head = self.cq.head.* & self.cq.mask;
const tail = (self.cq.head.* +% count) & self.cq.mask;
/// Queues (but does not submit) an SQE to perform a `recvmsg(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.3
pub fn recvmsg(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
msg: *os.msghdr,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_recvmsg(sqe, fd, msg, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `sendmsg(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.3
pub fn sendmsg(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
msg: *const os.msghdr_const,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_sendmsg(sqe, fd, msg, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform an async zerocopy `sendmsg(2)`.
/// Returns a pointer to the SQE.
/// Available since 6.1
pub fn sendmsg_zc(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
msg: *const os.msghdr_const,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_sendmsg_zc(sqe, fd, msg, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform an `openat(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.6.
pub fn openat(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
path: [*:0]const u8,
flags: linux.O,
mode: os.mode_t,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_openat(sqe, fd, path, flags, mode);
sqe.user_data = user_data;
return sqe;
}
/// Queues an openat using direct (registered) file descriptors.
///
/// To use an accept direct variant, the application must first have registered
/// a file table (with register_files). An unused table index will be
/// dynamically chosen and returned in the CQE res field.
///
/// After creation, they can be used by setting IOSQE_FIXED_FILE in the SQE
/// flags member, and setting the SQE fd field to the direct descriptor value
/// rather than the regular file descriptor.
///
/// Available since 5.15
pub fn openat_direct(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
path: [*:0]const u8,
flags: linux.O,
mode: os.mode_t,
file_index: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_openat_direct(sqe, fd, path, flags, mode, file_index);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `close(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.6.
pub fn close(self: *IO_Uring, user_data: u64, fd: os.fd_t) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_close(sqe, fd);
sqe.user_data = user_data;
return sqe;
}
/// Queues close of registered file descriptor.
/// Available since 5.15
pub fn close_direct(self: *IO_Uring, user_data: u64, file_index: u32) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_close_direct(sqe, file_index);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to register a timeout operation.
/// Returns a pointer to the SQE.
///
/// The timeout will complete when either the timeout expires, or after the specified number of
/// events complete (if `count` is greater than `0`).
///
/// `flags` may be `0` for a relative timeout, or `IORING_TIMEOUT_ABS` for an absolute timeout.
///
/// The completion event result will be `-ETIME` if the timeout completed through expiration,
/// `0` if the timeout completed after the specified number of events, or `-ECANCELED` if the
/// timeout was removed before it expired.
///
/// io_uring timeouts use the `CLOCK.MONOTONIC` clock source.
pub fn timeout(
self: *IO_Uring,
user_data: u64,
ts: *const os.linux.kernel_timespec,
count: u32,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_timeout(sqe, ts, count, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to remove an existing timeout operation.
/// Returns a pointer to the SQE.
///
/// The timeout is identified by its `user_data`.
///
/// The completion event result will be `0` if the timeout was found and cancelled successfully,
/// `-EBUSY` if the timeout was found but expiration was already in progress, or
/// `-ENOENT` if the timeout was not found.
pub fn timeout_remove(
self: *IO_Uring,
user_data: u64,
timeout_user_data: u64,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_timeout_remove(sqe, timeout_user_data, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to add a link timeout operation.
/// Returns a pointer to the SQE.
///
/// You need to set linux.IOSQE_IO_LINK to flags of the target operation
/// and then call this method right after the target operation.
/// See https://lwn.net/Articles/803932/ for detail.
///
/// If the dependent request finishes before the linked timeout, the timeout
/// is canceled. If the timeout finishes before the dependent request, the
/// dependent request will be canceled.
///
/// The completion event result of the link_timeout will be
/// `-ETIME` if the timeout finishes before the dependent request
/// (in this case, the completion event result of the dependent request will
/// be `-ECANCELED`), or
/// `-EALREADY` if the dependent request finishes before the linked timeout.
pub fn link_timeout(
self: *IO_Uring,
user_data: u64,
ts: *const os.linux.kernel_timespec,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_link_timeout(sqe, ts, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `poll(2)`.
/// Returns a pointer to the SQE.
pub fn poll_add(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
poll_mask: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_poll_add(sqe, fd, poll_mask);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to remove an existing poll operation.
/// Returns a pointer to the SQE.
pub fn poll_remove(
self: *IO_Uring,
user_data: u64,
target_user_data: u64,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_poll_remove(sqe, target_user_data);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to update the user data of an existing poll
/// operation. Returns a pointer to the SQE.
pub fn poll_update(
self: *IO_Uring,
user_data: u64,
old_user_data: u64,
new_user_data: u64,
poll_mask: u32,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_poll_update(sqe, old_user_data, new_user_data, poll_mask, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform an `fallocate(2)`.
/// Returns a pointer to the SQE.
pub fn fallocate(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
mode: i32,
offset: u64,
len: u64,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_fallocate(sqe, fd, mode, offset, len);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform an `statx(2)`.
/// Returns a pointer to the SQE.
pub fn statx(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
path: [:0]const u8,
flags: u32,
mask: u32,
buf: *linux.Statx,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_statx(sqe, fd, path, flags, mask, buf);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to remove an existing operation.
/// Returns a pointer to the SQE.
///
/// The operation is identified by its `user_data`.
///
/// The completion event result will be `0` if the operation was found and cancelled successfully,
/// `-EALREADY` if the operation was found but was already in progress, or
/// `-ENOENT` if the operation was not found.
pub fn cancel(
self: *IO_Uring,
user_data: u64,
cancel_user_data: u64,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_cancel(sqe, cancel_user_data, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `shutdown(2)`.
/// Returns a pointer to the SQE.
///
/// The operation is identified by its `user_data`.
pub fn shutdown(
self: *IO_Uring,
user_data: u64,
sockfd: os.socket_t,
how: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_shutdown(sqe, sockfd, how);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `renameat2(2)`.
/// Returns a pointer to the SQE.
pub fn renameat(
self: *IO_Uring,
user_data: u64,
old_dir_fd: os.fd_t,
old_path: [*:0]const u8,
new_dir_fd: os.fd_t,
new_path: [*:0]const u8,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_renameat(sqe, old_dir_fd, old_path, new_dir_fd, new_path, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `unlinkat(2)`.
/// Returns a pointer to the SQE.
pub fn unlinkat(
self: *IO_Uring,
user_data: u64,
dir_fd: os.fd_t,
path: [*:0]const u8,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_unlinkat(sqe, dir_fd, path, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `mkdirat(2)`.
/// Returns a pointer to the SQE.
pub fn mkdirat(
self: *IO_Uring,
user_data: u64,
dir_fd: os.fd_t,
path: [*:0]const u8,
mode: os.mode_t,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_mkdirat(sqe, dir_fd, path, mode);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `symlinkat(2)`.
/// Returns a pointer to the SQE.
pub fn symlinkat(
self: *IO_Uring,
user_data: u64,
target: [*:0]const u8,
new_dir_fd: os.fd_t,
link_path: [*:0]const u8,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_symlinkat(sqe, target, new_dir_fd, link_path);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `linkat(2)`.
/// Returns a pointer to the SQE.
pub fn linkat(
self: *IO_Uring,
user_data: u64,
old_dir_fd: os.fd_t,
old_path: [*:0]const u8,
new_dir_fd: os.fd_t,
new_path: [*:0]const u8,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_linkat(sqe, old_dir_fd, old_path, new_dir_fd, new_path, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to provide a group of buffers used for commands that read/receive data.
/// Returns a pointer to the SQE.
///
/// Provided buffers can be used in `read`, `recv` or `recvmsg` commands via .buffer_selection.
///
/// The kernel expects a contiguous block of memory of size (buffers_count * buffer_size).
pub fn provide_buffers(
self: *IO_Uring,
user_data: u64,
buffers: [*]u8,
buffer_size: usize,
buffers_count: usize,
group_id: usize,
buffer_id: usize,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_provide_buffers(sqe, buffers, buffer_size, buffers_count, group_id, buffer_id);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to remove a group of provided buffers.
/// Returns a pointer to the SQE.
pub fn remove_buffers(
self: *IO_Uring,
user_data: u64,
buffers_count: usize,
group_id: usize,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_remove_buffers(sqe, buffers_count, group_id);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `waitid(2)`.
/// Returns a pointer to the SQE.
pub fn waitid(
self: *IO_Uring,
user_data: u64,
id_type: linux.P,
id: i32,
infop: *linux.siginfo_t,
options: u32,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_waitid(sqe, id_type, id, infop, options, flags);
sqe.user_data = user_data;
return sqe;
}
/// Registers an array of file descriptors.
/// Every time a file descriptor is put in an SQE and submitted to the kernel, the kernel must
/// retrieve a reference to the file, and once I/O has completed the file reference must be
/// dropped. The atomic nature of this file reference can be a slowdown for high IOPS workloads.
/// This slowdown can be avoided by pre-registering file descriptors.
/// To refer to a registered file descriptor, IOSQE_FIXED_FILE must be set in the SQE's flags,
/// and the SQE's fd must be set to the index of the file descriptor in the registered array.
/// Registering file descriptors will wait for the ring to idle.
/// Files are automatically unregistered by the kernel when the ring is torn down.
/// An application need unregister only if it wants to register a new array of file descriptors.
pub fn register_files(self: *IO_Uring, fds: []const os.fd_t) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.REGISTER_FILES,
@as(*const anyopaque, @ptrCast(fds.ptr)),
@as(u32, @intCast(fds.len)),
);
try handle_registration_result(res);
}
/// Updates registered file descriptors.
///
/// Updates are applied starting at the provided offset in the original file descriptors slice.
/// There are three kind of updates:
/// * turning a sparse entry (where the fd is -1) into a real one
/// * removing an existing entry (set the fd to -1)
/// * replacing an existing entry with a new fd
/// Adding new file descriptors must be done with `register_files`.
pub fn register_files_update(self: *IO_Uring, offset: u32, fds: []const os.fd_t) !void {
assert(self.fd >= 0);
const FilesUpdate = extern struct {
offset: u32,
resv: u32,
fds: u64 align(8),
};
var update = FilesUpdate{
.offset = offset,
.resv = @as(u32, 0),
.fds = @as(u64, @intFromPtr(fds.ptr)),
};
const res = linux.io_uring_register(
self.fd,
.REGISTER_FILES_UPDATE,
@as(*const anyopaque, @ptrCast(&update)),
@as(u32, @intCast(fds.len)),
);
try handle_registration_result(res);
}
/// Registers the file descriptor for an eventfd that will be notified of completion events on
/// an io_uring instance.
/// Only a single a eventfd can be registered at any given point in time.
pub fn register_eventfd(self: *IO_Uring, fd: os.fd_t) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.REGISTER_EVENTFD,
@as(*const anyopaque, @ptrCast(&fd)),
1,
);
try handle_registration_result(res);
}
/// Registers the file descriptor for an eventfd that will be notified of completion events on
/// an io_uring instance. Notifications are only posted for events that complete in an async manner.
/// This means that events that complete inline while being submitted do not trigger a notification event.
/// Only a single eventfd can be registered at any given point in time.
pub fn register_eventfd_async(self: *IO_Uring, fd: os.fd_t) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.REGISTER_EVENTFD_ASYNC,
@as(*const anyopaque, @ptrCast(&fd)),
1,
);
try handle_registration_result(res);
}
/// Unregister the registered eventfd file descriptor.
pub fn unregister_eventfd(self: *IO_Uring) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.UNREGISTER_EVENTFD,
null,
0,
);
try handle_registration_result(res);
}
/// Registers an array of buffers for use with `read_fixed` and `write_fixed`.
pub fn register_buffers(self: *IO_Uring, buffers: []const os.iovec) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.REGISTER_BUFFERS,
buffers.ptr,
@as(u32, @intCast(buffers.len)),
);
try handle_registration_result(res);
}
/// Unregister the registered buffers.
pub fn unregister_buffers(self: *IO_Uring) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(self.fd, .UNREGISTER_BUFFERS, null, 0);
switch (linux.getErrno(res)) {
.SUCCESS => {},
.NXIO => return error.BuffersNotRegistered,
else => |errno| return os.unexpectedErrno(errno),
if (head <= tail) {
// head behind tail -> no wrapping
@memcpy(cqes[0..count], self.cq.cqes[head..tail]);
} else {
// head in front of tail -> buffer wraps
const two_copies_required: bool = self.cq.cqes.len - head < count;
const amount_to_copy_in_first = if (two_copies_required) self.cq.cqes.len - head else count;
@memcpy(cqes[0..amount_to_copy_in_first], self.cq.cqes[head .. head + amount_to_copy_in_first]);
if (two_copies_required) {
@memcpy(cqes[amount_to_copy_in_first..count], self.cq.cqes[0..tail]);
}
}
fn handle_registration_result(res: usize) !void {
switch (linux.getErrno(res)) {
.SUCCESS => {},
// One or more fds in the array are invalid, or the kernel does not support sparse sets:
.BADF => return error.FileDescriptorInvalid,
.BUSY => return error.FilesAlreadyRegistered,
.INVAL => return error.FilesEmpty,
// Adding `nr_args` file references would exceed the maximum allowed number of files the
// user is allowed to have according to the per-user RLIMIT_NOFILE resource limit and
// the CAP_SYS_RESOURCE capability is not set, or `nr_args` exceeds the maximum allowed
// for a fixed file set (older kernels have a limit of 1024 files vs 64K files):
.MFILE => return error.UserFdQuotaExceeded,
// Insufficient kernel resources, or the caller had a non-zero RLIMIT_MEMLOCK soft
// resource limit but tried to lock more memory than the limit permitted (not enforced
// when the process is privileged with CAP_IPC_LOCK):
.NOMEM => return error.SystemResources,
// Attempt to register files on a ring already registering files or being torn down:
.NXIO => return error.RingShuttingDownOrAlreadyRegisteringFiles,
else => |errno| return os.unexpectedErrno(errno),
}
}
self.cq_advance(count);
return count;
}
/// Unregisters all registered file descriptors previously associated with the ring.
pub fn unregister_files(self: *IO_Uring) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(self.fd, .UNREGISTER_FILES, null, 0);
switch (linux.getErrno(res)) {
.SUCCESS => {},
.NXIO => return error.FilesNotRegistered,
else => |errno| return os.unexpectedErrno(errno),
}
/// Returns a copy of an I/O completion, waiting for it if necessary, and advancing the CQ ring.
/// A convenience method for `copy_cqes()` for when you don't need to batch or peek.
pub fn copy_cqe(ring: *IoUring) !linux.io_uring_cqe {
var cqes: [1]linux.io_uring_cqe = undefined;
while (true) {
const count = try ring.copy_cqes(&cqes, 1);
if (count > 0) return cqes[0];
}
}
/// Prepares a socket creation request.
/// New socket fd will be returned in completion result.
/// Available since 5.19
pub fn socket(
self: *IO_Uring,
user_data: u64,
domain: u32,
socket_type: u32,
protocol: u32,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_socket(sqe, domain, socket_type, protocol, flags);
sqe.user_data = user_data;
return sqe;
}
/// Matches the implementation of cq_ring_needs_flush() in liburing.
pub fn cq_ring_needs_flush(self: *IoUring) bool {
return (@atomicLoad(u32, self.sq.flags, .Unordered) & linux.IORING_SQ_CQ_OVERFLOW) != 0;
}
/// Prepares a socket creation request for registered file at index `file_index`.
/// Available since 5.19
pub fn socket_direct(
self: *IO_Uring,
user_data: u64,
domain: u32,
socket_type: u32,
protocol: u32,
flags: u32,
file_index: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_socket_direct(sqe, domain, socket_type, protocol, flags, file_index);
sqe.user_data = user_data;
return sqe;
}
/// For advanced use cases only that implement custom completion queue methods.
/// If you use copy_cqes() or copy_cqe() you must not call cqe_seen() or cq_advance().
/// Must be called exactly once after a zero-copy CQE has been processed by your application.
/// Not idempotent, calling more than once will result in other CQEs being lost.
/// Matches the implementation of cqe_seen() in liburing.
pub fn cqe_seen(self: *IoUring, cqe: *linux.io_uring_cqe) void {
_ = cqe;
self.cq_advance(1);
}
/// Prepares a socket creation request for registered file, index chosen by kernel (file index alloc).
/// File index will be returned in CQE res field.
/// Available since 5.19
pub fn socket_direct_alloc(
self: *IO_Uring,
user_data: u64,
domain: u32,
socket_type: u32,
protocol: u32,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_socket_direct_alloc(sqe, domain, socket_type, protocol, flags);
sqe.user_data = user_data;
return sqe;
/// For advanced use cases only that implement custom completion queue methods.
/// Matches the implementation of cq_advance() in liburing.
pub fn cq_advance(self: *IoUring, count: u32) void {
if (count > 0) {
// Ensure the kernel only sees the new head value after the CQEs have been read.
@atomicStore(u32, self.cq.head, self.cq.head.* +% count, .Release);
}
}
/// Queues (but does not submit) an SQE to perform an `fsync(2)`.
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
/// For example, for `fdatasync()` you can set `IORING_FSYNC_DATASYNC` in the SQE's `rw_flags`.
/// N.B. While SQEs are initiated in the order in which they appear in the submission queue,
/// operations execute in parallel and completions are unordered. Therefore, an application that
/// submits a write followed by an fsync in the submission queue cannot expect the fsync to
/// apply to the write, since the fsync may complete before the write is issued to the disk.
/// You should preferably use `link_with_next_sqe()` on a write's SQE to link it with an fsync,
/// or else insert a full write barrier using `drain_previous_sqes()` when queueing an fsync.
pub fn fsync(self: *IoUring, user_data: u64, fd: os.fd_t, flags: u32) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_fsync(fd, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a no-op.
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
/// A no-op is more useful than may appear at first glance.
/// For example, you could call `drain_previous_sqes()` on the returned SQE, to use the no-op to
/// know when the ring is idle before acting on a kill signal.
pub fn nop(self: *IoUring, user_data: u64) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_nop();
sqe.user_data = user_data;
return sqe;
}
/// Used to select how the read should be handled.
pub const ReadBuffer = union(enum) {
/// io_uring will read directly into this buffer
buffer: []u8,
/// io_uring will read directly into these buffers using readv.
iovecs: []const os.iovec,
/// io_uring will select a buffer that has previously been provided with `provide_buffers`.
/// The buffer group reference by `group_id` must contain at least one buffer for the read to work.
/// `len` controls the number of bytes to read into the selected buffer.
buffer_selection: struct {
group_id: u16,
len: usize,
},
};
/// Queues (but does not submit) an SQE to perform a `read(2)` or `preadv(2)` depending on the buffer type.
/// * Reading into a `ReadBuffer.buffer` uses `read(2)`
/// * Reading into a `ReadBuffer.iovecs` uses `preadv(2)`
/// If you want to do a `preadv2(2)` then set `rw_flags` on the returned SQE. See https://man7.org/linux/man-pages/man2/preadv2.2.html
///
/// Returns a pointer to the SQE.
pub fn read(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
buffer: ReadBuffer,
offset: u64,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
switch (buffer) {
.buffer => |slice| sqe.prep_read(fd, slice, offset),
.iovecs => |vecs| sqe.prep_readv(fd, vecs, offset),
.buffer_selection => |selection| {
sqe.prep_rw(.READ, fd, 0, selection.len, offset);
sqe.flags |= linux.IOSQE_BUFFER_SELECT;
sqe.buf_index = selection.group_id;
},
}
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `write(2)`.
/// Returns a pointer to the SQE.
pub fn write(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
buffer: []const u8,
offset: u64,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_write(fd, buffer, offset);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `splice(2)`
/// Either `fd_in` or `fd_out` must be a pipe.
/// If `fd_in` refers to a pipe, `off_in` is ignored and must be set to std.math.maxInt(u64).
/// If `fd_in` does not refer to a pipe and `off_in` is maxInt(u64), then `len` are read
/// from `fd_in` starting from the file offset, which is incremented by the number of bytes read.
/// If `fd_in` does not refer to a pipe and `off_in` is not maxInt(u64), then the starting offset of `fd_in` will be `off_in`.
/// This splice operation can be used to implement sendfile by splicing to an intermediate pipe first,
/// then splice to the final destination. In fact, the implementation of sendfile in kernel uses splice internally.
///
/// NOTE that even if fd_in or fd_out refers to a pipe, the splice operation can still fail with EINVAL if one of the
/// fd doesn't explicitly support splice peration, e.g. reading from terminal is unsupported from kernel 5.7 to 5.11.
/// See https://github.com/axboe/liburing/issues/291
///
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
pub fn splice(self: *IoUring, user_data: u64, fd_in: os.fd_t, off_in: u64, fd_out: os.fd_t, off_out: u64, len: usize) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_splice(fd_in, off_in, fd_out, off_out, len);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a IORING_OP_READ_FIXED.
/// The `buffer` provided must be registered with the kernel by calling `register_buffers` first.
/// The `buffer_index` must be the same as its index in the array provided to `register_buffers`.
///
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
pub fn read_fixed(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
buffer: *os.iovec,
offset: u64,
buffer_index: u16,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_read_fixed(fd, buffer, offset, buffer_index);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `pwritev()`.
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
/// For example, if you want to do a `pwritev2()` then set `rw_flags` on the returned SQE.
/// See https://linux.die.net/man/2/pwritev.
pub fn writev(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
iovecs: []const os.iovec_const,
offset: u64,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_writev(fd, iovecs, offset);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a IORING_OP_WRITE_FIXED.
/// The `buffer` provided must be registered with the kernel by calling `register_buffers` first.
/// The `buffer_index` must be the same as its index in the array provided to `register_buffers`.
///
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
pub fn write_fixed(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
buffer: *os.iovec,
offset: u64,
buffer_index: u16,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_write_fixed(fd, buffer, offset, buffer_index);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform an `accept4(2)` on a socket.
/// Returns a pointer to the SQE.
/// Available since 5.5
pub fn accept(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_accept(fd, addr, addrlen, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues an multishot accept on a socket.
///
/// Multishot variant allows an application to issue a single accept request,
/// which will repeatedly trigger a CQE when a connection request comes in.
/// While IORING_CQE_F_MORE flag is set in CQE flags accept will generate
/// further CQEs.
///
/// Available since 5.19
pub fn accept_multishot(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_multishot_accept(fd, addr, addrlen, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues an accept using direct (registered) file descriptors.
///
/// To use an accept direct variant, the application must first have registered
/// a file table (with register_files). An unused table index will be
/// dynamically chosen and returned in the CQE res field.
///
/// After creation, they can be used by setting IOSQE_FIXED_FILE in the SQE
/// flags member, and setting the SQE fd field to the direct descriptor value
/// rather than the regular file descriptor.
///
/// Available since 5.19
pub fn accept_direct(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_accept_direct(fd, addr, addrlen, flags, linux.IORING_FILE_INDEX_ALLOC);
sqe.user_data = user_data;
return sqe;
}
/// Queues an multishot accept using direct (registered) file descriptors.
/// Available since 5.19
pub fn accept_multishot_direct(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_multishot_accept_direct(fd, addr, addrlen, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queue (but does not submit) an SQE to perform a `connect(2)` on a socket.
/// Returns a pointer to the SQE.
pub fn connect(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
addr: *const os.sockaddr,
addrlen: os.socklen_t,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_connect(fd, addr, addrlen);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `epoll_ctl(2)`.
/// Returns a pointer to the SQE.
pub fn epoll_ctl(
self: *IoUring,
user_data: u64,
epfd: os.fd_t,
fd: os.fd_t,
op: u32,
ev: ?*linux.epoll_event,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_epoll_ctl(epfd, fd, op, ev);
sqe.user_data = user_data;
return sqe;
}
/// Used to select how the recv call should be handled.
pub const RecvBuffer = union(enum) {
/// io_uring will recv directly into this buffer
buffer: []u8,
/// io_uring will select a buffer that has previously been provided with `provide_buffers`.
/// The buffer group referenced by `group_id` must contain at least one buffer for the recv call to work.
/// `len` controls the number of bytes to read into the selected buffer.
buffer_selection: struct {
group_id: u16,
len: usize,
},
};
/// Queues (but does not submit) an SQE to perform a `recv(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.6
pub fn recv(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
buffer: RecvBuffer,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
switch (buffer) {
.buffer => |slice| sqe.prep_recv(fd, slice, flags),
.buffer_selection => |selection| {
sqe.prep_rw(.RECV, fd, 0, selection.len, 0);
sqe.rw_flags = flags;
sqe.flags |= linux.IOSQE_BUFFER_SELECT;
sqe.buf_index = selection.group_id;
},
}
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `send(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.6
pub fn send(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
buffer: []const u8,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_send(fd, buffer, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform an async zerocopy `send(2)`.
///
/// This operation will most likely produce two CQEs. The flags field of the
/// first cqe may likely contain IORING_CQE_F_MORE, which means that there will
/// be a second cqe with the user_data field set to the same value. The user
/// must not modify the data buffer until the notification is posted. The first
/// cqe follows the usual rules and so its res field will contain the number of
/// bytes sent or a negative error code. The notification's res field will be
/// set to zero and the flags field will contain IORING_CQE_F_NOTIF. The two
/// step model is needed because the kernel may hold on to buffers for a long
/// time, e.g. waiting for a TCP ACK. Notifications responsible for controlling
/// the lifetime of the buffers. Even errored requests may generate a
/// notification.
///
/// Available since 6.0
pub fn send_zc(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
buffer: []const u8,
send_flags: u32,
zc_flags: u16,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_send_zc(fd, buffer, send_flags, zc_flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform an async zerocopy `send(2)`.
/// Returns a pointer to the SQE.
/// Available since 6.0
pub fn send_zc_fixed(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
buffer: []const u8,
send_flags: u32,
zc_flags: u16,
buf_index: u16,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_send_zc_fixed(fd, buffer, send_flags, zc_flags, buf_index);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `recvmsg(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.3
pub fn recvmsg(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
msg: *os.msghdr,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_recvmsg(fd, msg, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `sendmsg(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.3
pub fn sendmsg(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
msg: *const os.msghdr_const,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_sendmsg(fd, msg, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform an async zerocopy `sendmsg(2)`.
/// Returns a pointer to the SQE.
/// Available since 6.1
pub fn sendmsg_zc(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
msg: *const os.msghdr_const,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_sendmsg_zc(fd, msg, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform an `openat(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.6.
pub fn openat(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
path: [*:0]const u8,
flags: linux.O,
mode: os.mode_t,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_openat(fd, path, flags, mode);
sqe.user_data = user_data;
return sqe;
}
/// Queues an openat using direct (registered) file descriptors.
///
/// To use an accept direct variant, the application must first have registered
/// a file table (with register_files). An unused table index will be
/// dynamically chosen and returned in the CQE res field.
///
/// After creation, they can be used by setting IOSQE_FIXED_FILE in the SQE
/// flags member, and setting the SQE fd field to the direct descriptor value
/// rather than the regular file descriptor.
///
/// Available since 5.15
pub fn openat_direct(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
path: [*:0]const u8,
flags: linux.O,
mode: os.mode_t,
file_index: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_openat_direct(fd, path, flags, mode, file_index);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `close(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.6.
pub fn close(self: *IoUring, user_data: u64, fd: os.fd_t) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_close(fd);
sqe.user_data = user_data;
return sqe;
}
/// Queues close of registered file descriptor.
/// Available since 5.15
pub fn close_direct(self: *IoUring, user_data: u64, file_index: u32) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_close_direct(file_index);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to register a timeout operation.
/// Returns a pointer to the SQE.
///
/// The timeout will complete when either the timeout expires, or after the specified number of
/// events complete (if `count` is greater than `0`).
///
/// `flags` may be `0` for a relative timeout, or `IORING_TIMEOUT_ABS` for an absolute timeout.
///
/// The completion event result will be `-ETIME` if the timeout completed through expiration,
/// `0` if the timeout completed after the specified number of events, or `-ECANCELED` if the
/// timeout was removed before it expired.
///
/// io_uring timeouts use the `CLOCK.MONOTONIC` clock source.
pub fn timeout(
self: *IoUring,
user_data: u64,
ts: *const os.linux.kernel_timespec,
count: u32,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_timeout(ts, count, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to remove an existing timeout operation.
/// Returns a pointer to the SQE.
///
/// The timeout is identified by its `user_data`.
///
/// The completion event result will be `0` if the timeout was found and cancelled successfully,
/// `-EBUSY` if the timeout was found but expiration was already in progress, or
/// `-ENOENT` if the timeout was not found.
pub fn timeout_remove(
self: *IoUring,
user_data: u64,
timeout_user_data: u64,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_timeout_remove(timeout_user_data, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to add a link timeout operation.
/// Returns a pointer to the SQE.
///
/// You need to set linux.IOSQE_IO_LINK to flags of the target operation
/// and then call this method right after the target operation.
/// See https://lwn.net/Articles/803932/ for detail.
///
/// If the dependent request finishes before the linked timeout, the timeout
/// is canceled. If the timeout finishes before the dependent request, the
/// dependent request will be canceled.
///
/// The completion event result of the link_timeout will be
/// `-ETIME` if the timeout finishes before the dependent request
/// (in this case, the completion event result of the dependent request will
/// be `-ECANCELED`), or
/// `-EALREADY` if the dependent request finishes before the linked timeout.
pub fn link_timeout(
self: *IoUring,
user_data: u64,
ts: *const os.linux.kernel_timespec,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_link_timeout(ts, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `poll(2)`.
/// Returns a pointer to the SQE.
pub fn poll_add(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
poll_mask: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_poll_add(fd, poll_mask);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to remove an existing poll operation.
/// Returns a pointer to the SQE.
pub fn poll_remove(
self: *IoUring,
user_data: u64,
target_user_data: u64,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_poll_remove(target_user_data);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to update the user data of an existing poll
/// operation. Returns a pointer to the SQE.
pub fn poll_update(
self: *IoUring,
user_data: u64,
old_user_data: u64,
new_user_data: u64,
poll_mask: u32,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_poll_update(old_user_data, new_user_data, poll_mask, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform an `fallocate(2)`.
/// Returns a pointer to the SQE.
pub fn fallocate(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
mode: i32,
offset: u64,
len: u64,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_fallocate(fd, mode, offset, len);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform an `statx(2)`.
/// Returns a pointer to the SQE.
pub fn statx(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
path: [:0]const u8,
flags: u32,
mask: u32,
buf: *linux.Statx,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_statx(fd, path, flags, mask, buf);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to remove an existing operation.
/// Returns a pointer to the SQE.
///
/// The operation is identified by its `user_data`.
///
/// The completion event result will be `0` if the operation was found and cancelled successfully,
/// `-EALREADY` if the operation was found but was already in progress, or
/// `-ENOENT` if the operation was not found.
pub fn cancel(
self: *IoUring,
user_data: u64,
cancel_user_data: u64,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_cancel(cancel_user_data, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `shutdown(2)`.
/// Returns a pointer to the SQE.
///
/// The operation is identified by its `user_data`.
pub fn shutdown(
self: *IoUring,
user_data: u64,
sockfd: os.socket_t,
how: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_shutdown(sockfd, how);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `renameat2(2)`.
/// Returns a pointer to the SQE.
pub fn renameat(
self: *IoUring,
user_data: u64,
old_dir_fd: os.fd_t,
old_path: [*:0]const u8,
new_dir_fd: os.fd_t,
new_path: [*:0]const u8,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_renameat(old_dir_fd, old_path, new_dir_fd, new_path, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `unlinkat(2)`.
/// Returns a pointer to the SQE.
pub fn unlinkat(
self: *IoUring,
user_data: u64,
dir_fd: os.fd_t,
path: [*:0]const u8,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_unlinkat(dir_fd, path, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `mkdirat(2)`.
/// Returns a pointer to the SQE.
pub fn mkdirat(
self: *IoUring,
user_data: u64,
dir_fd: os.fd_t,
path: [*:0]const u8,
mode: os.mode_t,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_mkdirat(dir_fd, path, mode);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `symlinkat(2)`.
/// Returns a pointer to the SQE.
pub fn symlinkat(
self: *IoUring,
user_data: u64,
target: [*:0]const u8,
new_dir_fd: os.fd_t,
link_path: [*:0]const u8,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_symlinkat(target, new_dir_fd, link_path);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `linkat(2)`.
/// Returns a pointer to the SQE.
pub fn linkat(
self: *IoUring,
user_data: u64,
old_dir_fd: os.fd_t,
old_path: [*:0]const u8,
new_dir_fd: os.fd_t,
new_path: [*:0]const u8,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_linkat(old_dir_fd, old_path, new_dir_fd, new_path, flags);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to provide a group of buffers used for commands that read/receive data.
/// Returns a pointer to the SQE.
///
/// Provided buffers can be used in `read`, `recv` or `recvmsg` commands via .buffer_selection.
///
/// The kernel expects a contiguous block of memory of size (buffers_count * buffer_size).
pub fn provide_buffers(
self: *IoUring,
user_data: u64,
buffers: [*]u8,
buffer_size: usize,
buffers_count: usize,
group_id: usize,
buffer_id: usize,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_provide_buffers(buffers, buffer_size, buffers_count, group_id, buffer_id);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to remove a group of provided buffers.
/// Returns a pointer to the SQE.
pub fn remove_buffers(
self: *IoUring,
user_data: u64,
buffers_count: usize,
group_id: usize,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_remove_buffers(buffers_count, group_id);
sqe.user_data = user_data;
return sqe;
}
/// Queues (but does not submit) an SQE to perform a `waitid(2)`.
/// Returns a pointer to the SQE.
pub fn waitid(
self: *IoUring,
user_data: u64,
id_type: linux.P,
id: i32,
infop: *linux.siginfo_t,
options: u32,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_waitid(id_type, id, infop, options, flags);
sqe.user_data = user_data;
return sqe;
}
/// Registers an array of file descriptors.
/// Every time a file descriptor is put in an SQE and submitted to the kernel, the kernel must
/// retrieve a reference to the file, and once I/O has completed the file reference must be
/// dropped. The atomic nature of this file reference can be a slowdown for high IOPS workloads.
/// This slowdown can be avoided by pre-registering file descriptors.
/// To refer to a registered file descriptor, IOSQE_FIXED_FILE must be set in the SQE's flags,
/// and the SQE's fd must be set to the index of the file descriptor in the registered array.
/// Registering file descriptors will wait for the ring to idle.
/// Files are automatically unregistered by the kernel when the ring is torn down.
/// An application need unregister only if it wants to register a new array of file descriptors.
pub fn register_files(self: *IoUring, fds: []const os.fd_t) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.REGISTER_FILES,
@as(*const anyopaque, @ptrCast(fds.ptr)),
@as(u32, @intCast(fds.len)),
);
try handle_registration_result(res);
}
/// Updates registered file descriptors.
///
/// Updates are applied starting at the provided offset in the original file descriptors slice.
/// There are three kind of updates:
/// * turning a sparse entry (where the fd is -1) into a real one
/// * removing an existing entry (set the fd to -1)
/// * replacing an existing entry with a new fd
/// Adding new file descriptors must be done with `register_files`.
pub fn register_files_update(self: *IoUring, offset: u32, fds: []const os.fd_t) !void {
assert(self.fd >= 0);
const FilesUpdate = extern struct {
offset: u32,
resv: u32,
fds: u64 align(8),
};
var update = FilesUpdate{
.offset = offset,
.resv = @as(u32, 0),
.fds = @as(u64, @intFromPtr(fds.ptr)),
};
const res = linux.io_uring_register(
self.fd,
.REGISTER_FILES_UPDATE,
@as(*const anyopaque, @ptrCast(&update)),
@as(u32, @intCast(fds.len)),
);
try handle_registration_result(res);
}
/// Registers the file descriptor for an eventfd that will be notified of completion events on
/// an io_uring instance.
/// Only a single a eventfd can be registered at any given point in time.
pub fn register_eventfd(self: *IoUring, fd: os.fd_t) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.REGISTER_EVENTFD,
@as(*const anyopaque, @ptrCast(&fd)),
1,
);
try handle_registration_result(res);
}
/// Registers the file descriptor for an eventfd that will be notified of completion events on
/// an io_uring instance. Notifications are only posted for events that complete in an async manner.
/// This means that events that complete inline while being submitted do not trigger a notification event.
/// Only a single eventfd can be registered at any given point in time.
pub fn register_eventfd_async(self: *IoUring, fd: os.fd_t) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.REGISTER_EVENTFD_ASYNC,
@as(*const anyopaque, @ptrCast(&fd)),
1,
);
try handle_registration_result(res);
}
/// Unregister the registered eventfd file descriptor.
pub fn unregister_eventfd(self: *IoUring) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.UNREGISTER_EVENTFD,
null,
0,
);
try handle_registration_result(res);
}
/// Registers an array of buffers for use with `read_fixed` and `write_fixed`.
pub fn register_buffers(self: *IoUring, buffers: []const os.iovec) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.REGISTER_BUFFERS,
buffers.ptr,
@as(u32, @intCast(buffers.len)),
);
try handle_registration_result(res);
}
/// Unregister the registered buffers.
pub fn unregister_buffers(self: *IoUring) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(self.fd, .UNREGISTER_BUFFERS, null, 0);
switch (linux.getErrno(res)) {
.SUCCESS => {},
.NXIO => return error.BuffersNotRegistered,
else => |errno| return os.unexpectedErrno(errno),
}
}
fn handle_registration_result(res: usize) !void {
switch (linux.getErrno(res)) {
.SUCCESS => {},
// One or more fds in the array are invalid, or the kernel does not support sparse sets:
.BADF => return error.FileDescriptorInvalid,
.BUSY => return error.FilesAlreadyRegistered,
.INVAL => return error.FilesEmpty,
// Adding `nr_args` file references would exceed the maximum allowed number of files the
// user is allowed to have according to the per-user RLIMIT_NOFILE resource limit and
// the CAP_SYS_RESOURCE capability is not set, or `nr_args` exceeds the maximum allowed
// for a fixed file set (older kernels have a limit of 1024 files vs 64K files):
.MFILE => return error.UserFdQuotaExceeded,
// Insufficient kernel resources, or the caller had a non-zero RLIMIT_MEMLOCK soft
// resource limit but tried to lock more memory than the limit permitted (not enforced
// when the process is privileged with CAP_IPC_LOCK):
.NOMEM => return error.SystemResources,
// Attempt to register files on a ring already registering files or being torn down:
.NXIO => return error.RingShuttingDownOrAlreadyRegisteringFiles,
else => |errno| return os.unexpectedErrno(errno),
}
}
/// Unregisters all registered file descriptors previously associated with the ring.
pub fn unregister_files(self: *IoUring) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(self.fd, .UNREGISTER_FILES, null, 0);
switch (linux.getErrno(res)) {
.SUCCESS => {},
.NXIO => return error.FilesNotRegistered,
else => |errno| return os.unexpectedErrno(errno),
}
}
/// Prepares a socket creation request.
/// New socket fd will be returned in completion result.
/// Available since 5.19
pub fn socket(
self: *IoUring,
user_data: u64,
domain: u32,
socket_type: u32,
protocol: u32,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_socket(domain, socket_type, protocol, flags);
sqe.user_data = user_data;
return sqe;
}
/// Prepares a socket creation request for registered file at index `file_index`.
/// Available since 5.19
pub fn socket_direct(
self: *IoUring,
user_data: u64,
domain: u32,
socket_type: u32,
protocol: u32,
flags: u32,
file_index: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_socket_direct(domain, socket_type, protocol, flags, file_index);
sqe.user_data = user_data;
return sqe;
}
/// Prepares a socket creation request for registered file, index chosen by kernel (file index alloc).
/// File index will be returned in CQE res field.
/// Available since 5.19
pub fn socket_direct_alloc(
self: *IoUring,
user_data: u64,
domain: u32,
socket_type: u32,
protocol: u32,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_socket_direct_alloc(domain, socket_type, protocol, flags);
sqe.user_data = user_data;
return sqe;
}
pub const SubmissionQueue = struct {
head: *u32,
tail: *u32,
@@ -1441,563 +1440,6 @@ pub const CompletionQueue = struct {
}
};
pub fn io_uring_prep_nop(sqe: *linux.io_uring_sqe) void {
sqe.* = .{
.opcode = .NOP,
.flags = 0,
.ioprio = 0,
.fd = 0,
.off = 0,
.addr = 0,
.len = 0,
.rw_flags = 0,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.addr3 = 0,
.resv = 0,
};
}
pub fn io_uring_prep_fsync(sqe: *linux.io_uring_sqe, fd: os.fd_t, flags: u32) void {
sqe.* = .{
.opcode = .FSYNC,
.flags = 0,
.ioprio = 0,
.fd = fd,
.off = 0,
.addr = 0,
.len = 0,
.rw_flags = flags,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.addr3 = 0,
.resv = 0,
};
}
pub fn io_uring_prep_rw(
op: linux.IORING_OP,
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
addr: u64,
len: usize,
offset: u64,
) void {
sqe.* = .{
.opcode = op,
.flags = 0,
.ioprio = 0,
.fd = fd,
.off = offset,
.addr = addr,
.len = @as(u32, @intCast(len)),
.rw_flags = 0,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.addr3 = 0,
.resv = 0,
};
}
pub fn io_uring_prep_read(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: []u8, offset: u64) void {
io_uring_prep_rw(.READ, sqe, fd, @intFromPtr(buffer.ptr), buffer.len, offset);
}
pub fn io_uring_prep_write(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: []const u8, offset: u64) void {
io_uring_prep_rw(.WRITE, sqe, fd, @intFromPtr(buffer.ptr), buffer.len, offset);
}
pub fn io_uring_prep_splice(sqe: *linux.io_uring_sqe, fd_in: os.fd_t, off_in: u64, fd_out: os.fd_t, off_out: u64, len: usize) void {
io_uring_prep_rw(.SPLICE, sqe, fd_out, undefined, len, off_out);
sqe.addr = off_in;
sqe.splice_fd_in = fd_in;
}
pub fn io_uring_prep_readv(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
iovecs: []const os.iovec,
offset: u64,
) void {
io_uring_prep_rw(.READV, sqe, fd, @intFromPtr(iovecs.ptr), iovecs.len, offset);
}
pub fn io_uring_prep_writev(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
iovecs: []const os.iovec_const,
offset: u64,
) void {
io_uring_prep_rw(.WRITEV, sqe, fd, @intFromPtr(iovecs.ptr), iovecs.len, offset);
}
pub fn io_uring_prep_read_fixed(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: *os.iovec, offset: u64, buffer_index: u16) void {
io_uring_prep_rw(.READ_FIXED, sqe, fd, @intFromPtr(buffer.iov_base), buffer.iov_len, offset);
sqe.buf_index = buffer_index;
}
pub fn io_uring_prep_write_fixed(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: *os.iovec, offset: u64, buffer_index: u16) void {
io_uring_prep_rw(.WRITE_FIXED, sqe, fd, @intFromPtr(buffer.iov_base), buffer.iov_len, offset);
sqe.buf_index = buffer_index;
}
/// Poll masks previously used to comprise of 16 bits in the flags union of
/// a SQE, but were then extended to comprise of 32 bits in order to make
/// room for additional option flags. To ensure that the correct bits of
/// poll masks are consistently and properly read across multiple kernel
/// versions, poll masks are enforced to be little-endian.
/// https://www.spinics.net/lists/io-uring/msg02848.html
pub inline fn __io_uring_prep_poll_mask(poll_mask: u32) u32 {
return std.mem.nativeToLittle(u32, poll_mask);
}
pub fn io_uring_prep_accept(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) void {
// `addr` holds a pointer to `sockaddr`, and `addr2` holds a pointer to socklen_t`.
// `addr2` maps to `sqe.off` (u64) instead of `sqe.len` (which is only a u32).
io_uring_prep_rw(.ACCEPT, sqe, fd, @intFromPtr(addr), 0, @intFromPtr(addrlen));
sqe.rw_flags = flags;
}
pub fn io_uring_prep_accept_direct(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
file_index: u32,
) void {
io_uring_prep_accept(sqe, fd, addr, addrlen, flags);
__io_uring_set_target_fixed_file(sqe, file_index);
}
pub fn io_uring_prep_multishot_accept_direct(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) void {
io_uring_prep_multishot_accept(sqe, fd, addr, addrlen, flags);
__io_uring_set_target_fixed_file(sqe, linux.IORING_FILE_INDEX_ALLOC);
}
fn __io_uring_set_target_fixed_file(sqe: *linux.io_uring_sqe, file_index: u32) void {
const sqe_file_index: u32 = if (file_index == linux.IORING_FILE_INDEX_ALLOC)
linux.IORING_FILE_INDEX_ALLOC
else
// 0 means no fixed files, indexes should be encoded as "index + 1"
file_index + 1;
// This filed is overloaded in liburing:
// splice_fd_in: i32
// sqe_file_index: u32
sqe.splice_fd_in = @bitCast(sqe_file_index);
}
pub fn io_uring_prep_connect(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
addr: *const os.sockaddr,
addrlen: os.socklen_t,
) void {
// `addrlen` maps to `sqe.off` (u64) instead of `sqe.len` (which is only a u32).
io_uring_prep_rw(.CONNECT, sqe, fd, @intFromPtr(addr), 0, addrlen);
}
pub fn io_uring_prep_epoll_ctl(
sqe: *linux.io_uring_sqe,
epfd: os.fd_t,
fd: os.fd_t,
op: u32,
ev: ?*linux.epoll_event,
) void {
io_uring_prep_rw(.EPOLL_CTL, sqe, epfd, @intFromPtr(ev), op, @as(u64, @intCast(fd)));
}
pub fn io_uring_prep_recv(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: []u8, flags: u32) void {
io_uring_prep_rw(.RECV, sqe, fd, @intFromPtr(buffer.ptr), buffer.len, 0);
sqe.rw_flags = flags;
}
pub fn io_uring_prep_send(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: []const u8, flags: u32) void {
io_uring_prep_rw(.SEND, sqe, fd, @intFromPtr(buffer.ptr), buffer.len, 0);
sqe.rw_flags = flags;
}
pub fn io_uring_prep_send_zc(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: []const u8, flags: u32, zc_flags: u16) void {
io_uring_prep_rw(.SEND_ZC, sqe, fd, @intFromPtr(buffer.ptr), buffer.len, 0);
sqe.rw_flags = flags;
sqe.ioprio = zc_flags;
}
pub fn io_uring_prep_send_zc_fixed(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: []const u8, flags: u32, zc_flags: u16, buf_index: u16) void {
io_uring_prep_send_zc(sqe, fd, buffer, flags, zc_flags);
sqe.ioprio |= linux.IORING_RECVSEND_FIXED_BUF;
sqe.buf_index = buf_index;
}
pub fn io_uring_prep_sendmsg_zc(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
msg: *const os.msghdr_const,
flags: u32,
) void {
io_uring_prep_sendmsg(sqe, fd, msg, flags);
sqe.opcode = .SENDMSG_ZC;
}
pub fn io_uring_prep_recvmsg(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
msg: *os.msghdr,
flags: u32,
) void {
linux.io_uring_prep_rw(.RECVMSG, sqe, fd, @intFromPtr(msg), 1, 0);
sqe.rw_flags = flags;
}
pub fn io_uring_prep_sendmsg(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
msg: *const os.msghdr_const,
flags: u32,
) void {
linux.io_uring_prep_rw(.SENDMSG, sqe, fd, @intFromPtr(msg), 1, 0);
sqe.rw_flags = flags;
}
pub fn io_uring_prep_openat(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
path: [*:0]const u8,
flags: linux.O,
mode: os.mode_t,
) void {
io_uring_prep_rw(.OPENAT, sqe, fd, @intFromPtr(path), mode, 0);
sqe.rw_flags = @bitCast(flags);
}
pub fn io_uring_prep_openat_direct(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
path: [*:0]const u8,
flags: linux.O,
mode: os.mode_t,
file_index: u32,
) void {
io_uring_prep_openat(sqe, fd, path, flags, mode);
__io_uring_set_target_fixed_file(sqe, file_index);
}
pub fn io_uring_prep_close(sqe: *linux.io_uring_sqe, fd: os.fd_t) void {
sqe.* = .{
.opcode = .CLOSE,
.flags = 0,
.ioprio = 0,
.fd = fd,
.off = 0,
.addr = 0,
.len = 0,
.rw_flags = 0,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.addr3 = 0,
.resv = 0,
};
}
pub fn io_uring_prep_close_direct(sqe: *linux.io_uring_sqe, file_index: u32) void {
io_uring_prep_close(sqe, 0);
__io_uring_set_target_fixed_file(sqe, file_index);
}
pub fn io_uring_prep_timeout(
sqe: *linux.io_uring_sqe,
ts: *const os.linux.kernel_timespec,
count: u32,
flags: u32,
) void {
io_uring_prep_rw(.TIMEOUT, sqe, -1, @intFromPtr(ts), 1, count);
sqe.rw_flags = flags;
}
pub fn io_uring_prep_timeout_remove(sqe: *linux.io_uring_sqe, timeout_user_data: u64, flags: u32) void {
sqe.* = .{
.opcode = .TIMEOUT_REMOVE,
.flags = 0,
.ioprio = 0,
.fd = -1,
.off = 0,
.addr = timeout_user_data,
.len = 0,
.rw_flags = flags,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.addr3 = 0,
.resv = 0,
};
}
pub fn io_uring_prep_link_timeout(
sqe: *linux.io_uring_sqe,
ts: *const os.linux.kernel_timespec,
flags: u32,
) void {
linux.io_uring_prep_rw(.LINK_TIMEOUT, sqe, -1, @intFromPtr(ts), 1, 0);
sqe.rw_flags = flags;
}
pub fn io_uring_prep_poll_add(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
poll_mask: u32,
) void {
io_uring_prep_rw(.POLL_ADD, sqe, fd, @intFromPtr(@as(?*anyopaque, null)), 0, 0);
sqe.rw_flags = __io_uring_prep_poll_mask(poll_mask);
}
pub fn io_uring_prep_poll_remove(
sqe: *linux.io_uring_sqe,
target_user_data: u64,
) void {
io_uring_prep_rw(.POLL_REMOVE, sqe, -1, target_user_data, 0, 0);
}
pub fn io_uring_prep_poll_update(
sqe: *linux.io_uring_sqe,
old_user_data: u64,
new_user_data: u64,
poll_mask: u32,
flags: u32,
) void {
io_uring_prep_rw(.POLL_REMOVE, sqe, -1, old_user_data, flags, new_user_data);
sqe.rw_flags = __io_uring_prep_poll_mask(poll_mask);
}
pub fn io_uring_prep_fallocate(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
mode: i32,
offset: u64,
len: u64,
) void {
sqe.* = .{
.opcode = .FALLOCATE,
.flags = 0,
.ioprio = 0,
.fd = fd,
.off = offset,
.addr = len,
.len = @as(u32, @intCast(mode)),
.rw_flags = 0,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.addr3 = 0,
.resv = 0,
};
}
pub fn io_uring_prep_statx(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
path: [*:0]const u8,
flags: u32,
mask: u32,
buf: *linux.Statx,
) void {
io_uring_prep_rw(.STATX, sqe, fd, @intFromPtr(path), mask, @intFromPtr(buf));
sqe.rw_flags = flags;
}
pub fn io_uring_prep_cancel(
sqe: *linux.io_uring_sqe,
cancel_user_data: u64,
flags: u32,
) void {
io_uring_prep_rw(.ASYNC_CANCEL, sqe, -1, cancel_user_data, 0, 0);
sqe.rw_flags = flags;
}
pub fn io_uring_prep_shutdown(
sqe: *linux.io_uring_sqe,
sockfd: os.socket_t,
how: u32,
) void {
io_uring_prep_rw(.SHUTDOWN, sqe, sockfd, 0, how, 0);
}
pub fn io_uring_prep_renameat(
sqe: *linux.io_uring_sqe,
old_dir_fd: os.fd_t,
old_path: [*:0]const u8,
new_dir_fd: os.fd_t,
new_path: [*:0]const u8,
flags: u32,
) void {
io_uring_prep_rw(
.RENAMEAT,
sqe,
old_dir_fd,
@intFromPtr(old_path),
0,
@intFromPtr(new_path),
);
sqe.len = @bitCast(new_dir_fd);
sqe.rw_flags = flags;
}
pub fn io_uring_prep_unlinkat(
sqe: *linux.io_uring_sqe,
dir_fd: os.fd_t,
path: [*:0]const u8,
flags: u32,
) void {
io_uring_prep_rw(.UNLINKAT, sqe, dir_fd, @intFromPtr(path), 0, 0);
sqe.rw_flags = flags;
}
pub fn io_uring_prep_mkdirat(
sqe: *linux.io_uring_sqe,
dir_fd: os.fd_t,
path: [*:0]const u8,
mode: os.mode_t,
) void {
io_uring_prep_rw(.MKDIRAT, sqe, dir_fd, @intFromPtr(path), mode, 0);
}
pub fn io_uring_prep_symlinkat(
sqe: *linux.io_uring_sqe,
target: [*:0]const u8,
new_dir_fd: os.fd_t,
link_path: [*:0]const u8,
) void {
io_uring_prep_rw(
.SYMLINKAT,
sqe,
new_dir_fd,
@intFromPtr(target),
0,
@intFromPtr(link_path),
);
}
pub fn io_uring_prep_linkat(
sqe: *linux.io_uring_sqe,
old_dir_fd: os.fd_t,
old_path: [*:0]const u8,
new_dir_fd: os.fd_t,
new_path: [*:0]const u8,
flags: u32,
) void {
io_uring_prep_rw(
.LINKAT,
sqe,
old_dir_fd,
@intFromPtr(old_path),
0,
@intFromPtr(new_path),
);
sqe.len = @bitCast(new_dir_fd);
sqe.rw_flags = flags;
}
pub fn io_uring_prep_provide_buffers(
sqe: *linux.io_uring_sqe,
buffers: [*]u8,
buffer_len: usize,
num: usize,
group_id: usize,
buffer_id: usize,
) void {
const ptr = @intFromPtr(buffers);
io_uring_prep_rw(.PROVIDE_BUFFERS, sqe, @as(i32, @intCast(num)), ptr, buffer_len, buffer_id);
sqe.buf_index = @intCast(group_id);
}
pub fn io_uring_prep_remove_buffers(
sqe: *linux.io_uring_sqe,
num: usize,
group_id: usize,
) void {
io_uring_prep_rw(.REMOVE_BUFFERS, sqe, @as(i32, @intCast(num)), 0, 0, 0);
sqe.buf_index = @intCast(group_id);
}
pub fn io_uring_prep_multishot_accept(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) void {
io_uring_prep_accept(sqe, fd, addr, addrlen, flags);
sqe.ioprio |= linux.IORING_ACCEPT_MULTISHOT;
}
pub fn io_uring_prep_socket(
sqe: *linux.io_uring_sqe,
domain: u32,
socket_type: u32,
protocol: u32,
flags: u32,
) void {
io_uring_prep_rw(.SOCKET, sqe, @intCast(domain), 0, protocol, socket_type);
sqe.rw_flags = flags;
}
pub fn io_uring_prep_socket_direct(
sqe: *linux.io_uring_sqe,
domain: u32,
socket_type: u32,
protocol: u32,
flags: u32,
file_index: u32,
) void {
io_uring_prep_socket(sqe, domain, socket_type, protocol, flags);
__io_uring_set_target_fixed_file(sqe, file_index);
}
pub fn io_uring_prep_socket_direct_alloc(
sqe: *linux.io_uring_sqe,
domain: u32,
socket_type: u32,
protocol: u32,
flags: u32,
) void {
io_uring_prep_socket(sqe, domain, socket_type, protocol, flags);
__io_uring_set_target_fixed_file(sqe, linux.IORING_FILE_INDEX_ALLOC);
}
pub fn io_uring_prep_waitid(
sqe: *linux.io_uring_sqe,
id_type: linux.P,
id: i32,
infop: *linux.siginfo_t,
options: u32,
flags: u32,
) void {
io_uring_prep_rw(.WAITID, sqe, id, 0, @intFromEnum(id_type), @intFromPtr(infop));
sqe.rw_flags = flags;
sqe.splice_fd_in = @bitCast(options);
}
test "structs/offsets/entries" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
@@ -2009,14 +1451,14 @@ test "structs/offsets/entries" {
try testing.expectEqual(0x8000000, linux.IORING_OFF_CQ_RING);
try testing.expectEqual(0x10000000, linux.IORING_OFF_SQES);
try testing.expectError(error.EntriesZero, IO_Uring.init(0, 0));
try testing.expectError(error.EntriesNotPowerOfTwo, IO_Uring.init(3, 0));
try testing.expectError(error.EntriesZero, IoUring.init(0, 0));
try testing.expectError(error.EntriesNotPowerOfTwo, IoUring.init(3, 0));
}
test "nop" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2083,7 +1525,7 @@ test "nop" {
test "readv" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2125,7 +1567,7 @@ test "readv" {
test "writev/fsync/readv" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(4, 0) catch |err| switch (err) {
var ring = IoUring.init(4, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2195,7 +1637,7 @@ test "writev/fsync/readv" {
test "write/read" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(2, 0) catch |err| switch (err) {
var ring = IoUring.init(2, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2242,7 +1684,7 @@ test "write/read" {
test "splice/read" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(4, 0) catch |err| switch (err) {
var ring = IoUring.init(4, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2313,7 +1755,7 @@ test "splice/read" {
test "write_fixed/read_fixed" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(2, 0) catch |err| switch (err) {
var ring = IoUring.init(2, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2378,7 +1820,7 @@ test "write_fixed/read_fixed" {
test "openat" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2432,7 +1874,7 @@ test "openat" {
test "close" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2463,7 +1905,7 @@ test "close" {
test "accept/connect/send/recv" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(16, 0) catch |err| switch (err) {
var ring = IoUring.init(16, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2476,8 +1918,8 @@ test "accept/connect/send/recv" {
const buffer_send = [_]u8{ 1, 0, 1, 0, 1, 0, 1, 0, 1, 0 };
var buffer_recv = [_]u8{ 0, 1, 0, 1, 0 };
const send = try ring.send(0xeeeeeeee, socket_test_harness.client, buffer_send[0..], 0);
send.flags |= linux.IOSQE_IO_LINK;
const sqe_send = try ring.send(0xeeeeeeee, socket_test_harness.client, buffer_send[0..], 0);
sqe_send.flags |= linux.IOSQE_IO_LINK;
_ = try ring.recv(0xffffffff, socket_test_harness.server, .{ .buffer = buffer_recv[0..] }, 0);
try testing.expectEqual(@as(u32, 2), try ring.submit());
@@ -2504,7 +1946,7 @@ test "accept/connect/send/recv" {
test "sendmsg/recvmsg" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(2, 0) catch |err| switch (err) {
var ring = IoUring.init(2, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2591,7 +2033,7 @@ test "sendmsg/recvmsg" {
test "timeout (after a relative time)" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2622,7 +2064,7 @@ test "timeout (after a relative time)" {
test "timeout (after a number of completions)" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(2, 0) catch |err| switch (err) {
var ring = IoUring.init(2, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2655,7 +2097,7 @@ test "timeout (after a number of completions)" {
test "timeout_remove" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(2, 0) catch |err| switch (err) {
var ring = IoUring.init(2, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2715,7 +2157,7 @@ test "timeout_remove" {
test "accept/connect/recv/link_timeout" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(16, 0) catch |err| switch (err) {
var ring = IoUring.init(16, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2764,7 +2206,7 @@ test "accept/connect/recv/link_timeout" {
test "fallocate" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2810,7 +2252,7 @@ test "fallocate" {
test "statx" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2867,7 +2309,7 @@ test "statx" {
test "accept/connect/recv/cancel" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(16, 0) catch |err| switch (err) {
var ring = IoUring.init(16, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2917,7 +2359,7 @@ test "accept/connect/recv/cancel" {
test "register_files_update" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3004,7 +2446,7 @@ test "register_files_update" {
test "shutdown" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(16, 0) catch |err| switch (err) {
var ring = IoUring.init(16, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3068,7 +2510,7 @@ test "shutdown" {
test "renameat" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3129,15 +2571,15 @@ test "renameat" {
defer new_file.close();
var new_file_data: [16]u8 = undefined;
const read = try new_file.readAll(&new_file_data);
try testing.expectEqualStrings("hello", new_file_data[0..read]);
const bytes_read = try new_file.readAll(&new_file_data);
try testing.expectEqualStrings("hello", new_file_data[0..bytes_read]);
}
}
test "unlinkat" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3189,7 +2631,7 @@ test "unlinkat" {
test "mkdirat" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3233,7 +2675,7 @@ test "mkdirat" {
test "symlinkat" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3281,7 +2723,7 @@ test "symlinkat" {
test "linkat" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3333,14 +2775,14 @@ test "linkat" {
defer second_file.close();
var second_file_data: [16]u8 = undefined;
const read = try second_file.readAll(&second_file_data);
try testing.expectEqualStrings("hello", second_file_data[0..read]);
const bytes_read = try second_file.readAll(&second_file_data);
try testing.expectEqualStrings("hello", second_file_data[0..bytes_read]);
}
test "provide_buffers: read" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3472,7 +2914,7 @@ test "provide_buffers: read" {
test "remove_buffers" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3561,7 +3003,7 @@ test "remove_buffers" {
test "provide_buffers: accept/connect/send/recv" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(16, 0) catch |err| switch (err) {
var ring = IoUring.init(16, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3736,7 +3178,7 @@ const SocketTestHarness = struct {
}
};
fn createSocketTestHarness(ring: *IO_Uring) !SocketTestHarness {
fn createSocketTestHarness(ring: *IoUring) !SocketTestHarness {
// Create a TCP server socket
var address = try net.Address.parseIp4("127.0.0.1", 0);
const listener_socket = try createListenerSocket(&address);
@@ -3805,7 +3247,7 @@ fn createListenerSocket(address: *net.Address) !os.socket_t {
test "accept multishot" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var ring = IO_Uring.init(16, 0) catch |err| switch (err) {
var ring = IoUring.init(16, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3844,7 +3286,7 @@ test "accept multishot" {
test "accept/connect/send_zc/recv" {
try skipKernelLessThan(.{ .major = 6, .minor = 0, .patch = 0 });
var ring = IO_Uring.init(16, 0) catch |err| switch (err) {
var ring = IoUring.init(16, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3858,8 +3300,8 @@ test "accept/connect/send_zc/recv" {
var buffer_recv = [_]u8{0} ** 10;
// zero-copy send
const send = try ring.send_zc(0xeeeeeeee, socket_test_harness.client, buffer_send[0..], 0, 0);
send.flags |= linux.IOSQE_IO_LINK;
const sqe_send = try ring.send_zc(0xeeeeeeee, socket_test_harness.client, buffer_send[0..], 0, 0);
sqe_send.flags |= linux.IOSQE_IO_LINK;
_ = try ring.recv(0xffffffff, socket_test_harness.server, .{ .buffer = buffer_recv[0..] }, 0);
try testing.expectEqual(@as(u32, 2), try ring.submit());
@@ -3897,7 +3339,7 @@ test "accept/connect/send_zc/recv" {
test "accept_direct" {
try skipKernelLessThan(.{ .major = 5, .minor = 19, .patch = 0 });
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3977,7 +3419,7 @@ test "accept_direct" {
test "accept_multishot_direct" {
try skipKernelLessThan(.{ .major = 5, .minor = 19, .patch = 0 });
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -4035,7 +3477,7 @@ test "accept_multishot_direct" {
test "socket" {
try skipKernelLessThan(.{ .major = 5, .minor = 19, .patch = 0 });
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -4058,7 +3500,7 @@ test "socket" {
test "socket_direct/socket_direct_alloc/close_direct" {
try skipKernelLessThan(.{ .major = 5, .minor = 19, .patch = 0 });
var ring = IO_Uring.init(2, 0) catch |err| switch (err) {
var ring = IoUring.init(2, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -4136,7 +3578,7 @@ test "socket_direct/socket_direct_alloc/close_direct" {
test "openat_direct/close_direct" {
try skipKernelLessThan(.{ .major = 5, .minor = 19, .patch = 0 });
var ring = IO_Uring.init(2, 0) catch |err| switch (err) {
var ring = IoUring.init(2, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -4187,7 +3629,7 @@ test "openat_direct/close_direct" {
test "waitid" {
try skipKernelLessThan(.{ .major = 6, .minor = 7, .patch = 0 });
var ring = IO_Uring.init(16, 0) catch |err| switch (err) {
var ring = IoUring.init(16, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,