srctree

Matthew Lugg parent f3227598 265f42d4 9cf28d1e
Merge pull request #19214 from mlugg/fuck-usingnamespace

std: fuck usingnamespace

inlinesplit
CMakeLists.txt added: 2966, removed: 3062, total 0
@@ -291,7 +291,8 @@ set(ZIG_STAGE2_SOURCES
"${CMAKE_SOURCE_DIR}/lib/std/os/linux/errno/generic.zig"
"${CMAKE_SOURCE_DIR}/lib/std/os/linux/x86_64.zig"
"${CMAKE_SOURCE_DIR}/lib/std/os/linux.zig"
"${CMAKE_SOURCE_DIR}/lib/std/os/linux/io_uring.zig"
"${CMAKE_SOURCE_DIR}/lib/std/os/linux/IoUring.zig"
"${CMAKE_SOURCE_DIR}/lib/std/os/linux/io_uring_sqe.zig"
"${CMAKE_SOURCE_DIR}/lib/std/os/linux/x86_64.zig"
"${CMAKE_SOURCE_DIR}/lib/std/os/windows.zig"
"${CMAKE_SOURCE_DIR}/lib/std/os/windows/ntstatus.zig"
 
lib/std/c.zig added: 2966, removed: 3062, total 0
@@ -1494,38 +1494,33 @@ pub const speed_t = switch (native_os) {
pub const whence_t = if (native_os == .wasi) std.os.wasi.whence_t else c_int;
 
// Unix-like systems
pub usingnamespace switch (native_os) {
.netbsd, .windows => struct {},
else => struct {
pub const DIR = opaque {};
pub extern "c" fn opendir(pathname: [*:0]const u8) ?*DIR;
pub extern "c" fn fdopendir(fd: c_int) ?*DIR;
pub extern "c" fn rewinddir(dp: *DIR) void;
pub extern "c" fn closedir(dp: *DIR) c_int;
pub extern "c" fn telldir(dp: *DIR) c_long;
pub extern "c" fn seekdir(dp: *DIR, loc: c_long) void;
pub const DIR = opaque {};
pub extern "c" fn opendir(pathname: [*:0]const u8) ?*DIR;
pub extern "c" fn fdopendir(fd: c_int) ?*DIR;
pub extern "c" fn rewinddir(dp: *DIR) void;
pub extern "c" fn closedir(dp: *DIR) c_int;
pub extern "c" fn telldir(dp: *DIR) c_long;
pub extern "c" fn seekdir(dp: *DIR, loc: c_long) void;
 
pub extern "c" fn clock_gettime(clk_id: c_int, tp: *c.timespec) c_int;
pub extern "c" fn clock_getres(clk_id: c_int, tp: *c.timespec) c_int;
pub extern "c" fn gettimeofday(noalias tv: ?*c.timeval, noalias tz: ?*c.timezone) c_int;
pub extern "c" fn nanosleep(rqtp: *const c.timespec, rmtp: ?*c.timespec) c_int;
pub extern "c" fn clock_gettime(clk_id: c_int, tp: *c.timespec) c_int;
pub extern "c" fn clock_getres(clk_id: c_int, tp: *c.timespec) c_int;
pub extern "c" fn gettimeofday(noalias tv: ?*c.timeval, noalias tz: ?*c.timezone) c_int;
pub extern "c" fn nanosleep(rqtp: *const c.timespec, rmtp: ?*c.timespec) c_int;
 
pub extern "c" fn getrusage(who: c_int, usage: *c.rusage) c_int;
pub extern "c" fn getrusage(who: c_int, usage: *c.rusage) c_int;
 
pub extern "c" fn sched_yield() c_int;
pub extern "c" fn sched_yield() c_int;
 
pub extern "c" fn sigaction(sig: c_int, noalias act: ?*const c.Sigaction, noalias oact: ?*c.Sigaction) c_int;
pub extern "c" fn sigprocmask(how: c_int, noalias set: ?*const c.sigset_t, noalias oset: ?*c.sigset_t) c_int;
pub extern "c" fn sigfillset(set: ?*c.sigset_t) void;
pub extern "c" fn sigwait(set: ?*c.sigset_t, sig: ?*c_int) c_int;
pub extern "c" fn sigaction(sig: c_int, noalias act: ?*const c.Sigaction, noalias oact: ?*c.Sigaction) c_int;
pub extern "c" fn sigprocmask(how: c_int, noalias set: ?*const c.sigset_t, noalias oset: ?*c.sigset_t) c_int;
pub extern "c" fn sigfillset(set: ?*c.sigset_t) void;
pub extern "c" fn sigwait(set: ?*c.sigset_t, sig: ?*c_int) c_int;
 
pub extern "c" fn socket(domain: c_uint, sock_type: c_uint, protocol: c_uint) c_int;
pub extern "c" fn socket(domain: c_uint, sock_type: c_uint, protocol: c_uint) c_int;
 
pub extern "c" fn alarm(seconds: c_uint) c_uint;
pub extern "c" fn alarm(seconds: c_uint) c_uint;
 
pub extern "c" fn msync(addr: *align(page_size) const anyopaque, len: usize, flags: c_int) c_int;
},
};
pub extern "c" fn msync(addr: *align(page_size) const anyopaque, len: usize, flags: c_int) c_int;
 
pub const fstat = switch (native_os) {
.macos => switch (native_arch) {
@@ -1863,16 +1858,14 @@ pub extern "c" fn setlogmask(maskpri: c_int) c_int;
 
pub extern "c" fn if_nametoindex([*:0]const u8) c_int;
 
pub usingnamespace if (builtin.target.isAndroid()) struct {
// android bionic libc does not implement getcontext,
// and std.os.linux.getcontext also cannot be built for
// bionic libc currently.
} else if (native_os == .linux and builtin.target.isMusl()) struct {
// musl does not implement getcontext
pub const getcontext = std.os.linux.getcontext;
} else struct {
pub extern "c" fn getcontext(ucp: *std.os.ucontext_t) c_int;
};
pub const getcontext = if (builtin.target.isAndroid())
@compileError("android bionic libc does not implement getcontext")
else if (native_os == .linux and builtin.target.isMusl())
std.os.linux.getcontext
else
struct {
extern fn getcontext(ucp: *std.os.ucontext_t) c_int;
}.getcontext;
 
pub const max_align_t = if (native_abi == .msvc)
f64
 
lib/std/c/openbsd.zig added: 2966, removed: 3062, total 0
@@ -894,11 +894,6 @@ comptime {
std.debug.assert(@sizeOf(siginfo_t) == 136);
}
 
pub usingnamespace switch (builtin.cpu.arch) {
.x86_64 => struct {},
else => struct {},
};
 
pub const ucontext_t = switch (builtin.cpu.arch) {
.x86_64 => extern struct {
sc_rdi: c_long,
 
lib/std/enums.zig added: 2966, removed: 3062, total 0
@@ -241,27 +241,174 @@ test nameCast {
/// to dense indices. This type does no dynamic allocation and
/// can be copied by value.
pub fn EnumSet(comptime E: type) type {
const mixin = struct {
fn EnumSetExt(comptime Self: type) type {
const Indexer = Self.Indexer;
return struct {
/// Initializes the set using a struct of bools
pub fn init(init_values: EnumFieldStruct(E, bool, false)) Self {
var result = Self{};
comptime var i: usize = 0;
inline while (i < Self.len) : (i += 1) {
const key = comptime Indexer.keyForIndex(i);
const tag = comptime @tagName(key);
if (@field(init_values, tag)) {
result.bits.set(i);
}
}
return result;
return struct {
const Self = @This();
 
/// The indexing rules for converting between keys and indices.
pub const Indexer = EnumIndexer(E);
/// The element type for this set.
pub const Key = Indexer.Key;
 
const BitSet = std.StaticBitSet(Indexer.count);
 
/// The maximum number of items in this set.
pub const len = Indexer.count;
 
bits: BitSet = BitSet.initEmpty(),
 
/// Initializes the set using a struct of bools
pub fn init(init_values: EnumFieldStruct(E, bool, false)) Self {
var result: Self = .{};
inline for (0..Self.len) |i| {
const key = comptime Indexer.keyForIndex(i);
const tag = @tagName(key);
if (@field(init_values, tag)) {
result.bits.set(i);
}
};
}
return result;
}
 
/// Returns a set containing no keys.
pub fn initEmpty() Self {
return .{ .bits = BitSet.initEmpty() };
}
 
/// Returns a set containing all possible keys.
pub fn initFull() Self {
return .{ .bits = BitSet.initFull() };
}
 
/// Returns a set containing multiple keys.
pub fn initMany(keys: []const Key) Self {
var set = initEmpty();
for (keys) |key| set.insert(key);
return set;
}
 
/// Returns a set containing a single key.
pub fn initOne(key: Key) Self {
return initMany(&[_]Key{key});
}
 
/// Returns the number of keys in the set.
pub fn count(self: Self) usize {
return self.bits.count();
}
 
/// Checks if a key is in the set.
pub fn contains(self: Self, key: Key) bool {
return self.bits.isSet(Indexer.indexOf(key));
}
 
/// Puts a key in the set.
pub fn insert(self: *Self, key: Key) void {
self.bits.set(Indexer.indexOf(key));
}
 
/// Removes a key from the set.
pub fn remove(self: *Self, key: Key) void {
self.bits.unset(Indexer.indexOf(key));
}
 
/// Changes the presence of a key in the set to match the passed bool.
pub fn setPresent(self: *Self, key: Key, present: bool) void {
self.bits.setValue(Indexer.indexOf(key), present);
}
 
/// Toggles the presence of a key in the set. If the key is in
/// the set, removes it. Otherwise adds it.
pub fn toggle(self: *Self, key: Key) void {
self.bits.toggle(Indexer.indexOf(key));
}
 
/// Toggles the presence of all keys in the passed set.
pub fn toggleSet(self: *Self, other: Self) void {
self.bits.toggleSet(other.bits);
}
 
/// Toggles all possible keys in the set.
pub fn toggleAll(self: *Self) void {
self.bits.toggleAll();
}
 
/// Adds all keys in the passed set to this set.
pub fn setUnion(self: *Self, other: Self) void {
self.bits.setUnion(other.bits);
}
 
/// Removes all keys which are not in the passed set.
pub fn setIntersection(self: *Self, other: Self) void {
self.bits.setIntersection(other.bits);
}
 
/// Returns true iff both sets have the same keys.
pub fn eql(self: Self, other: Self) bool {
return self.bits.eql(other.bits);
}
 
/// Returns true iff all the keys in this set are
/// in the other set. The other set may have keys
/// not found in this set.
pub fn subsetOf(self: Self, other: Self) bool {
return self.bits.subsetOf(other.bits);
}
 
/// Returns true iff this set contains all the keys
/// in the other set. This set may have keys not
/// found in the other set.
pub fn supersetOf(self: Self, other: Self) bool {
return self.bits.supersetOf(other.bits);
}
 
/// Returns a set with all the keys not in this set.
pub fn complement(self: Self) Self {
return .{ .bits = self.bits.complement() };
}
 
/// Returns a set with keys that are in either this
/// set or the other set.
pub fn unionWith(self: Self, other: Self) Self {
return .{ .bits = self.bits.unionWith(other.bits) };
}
 
/// Returns a set with keys that are in both this
/// set and the other set.
pub fn intersectWith(self: Self, other: Self) Self {
return .{ .bits = self.bits.intersectWith(other.bits) };
}
 
/// Returns a set with keys that are in either this
/// set or the other set, but not both.
pub fn xorWith(self: Self, other: Self) Self {
return .{ .bits = self.bits.xorWith(other.bits) };
}
 
/// Returns a set with keys that are in this set
/// except for keys in the other set.
pub fn differenceWith(self: Self, other: Self) Self {
return .{ .bits = self.bits.differenceWith(other.bits) };
}
 
/// Returns an iterator over this set, which iterates in
/// index order. Modifications to the set during iteration
/// may or may not be observed by the iterator, but will
/// not invalidate it.
pub fn iterator(self: *const Self) Iterator {
return .{ .inner = self.bits.iterator(.{}) };
}
 
pub const Iterator = struct {
inner: BitSet.Iterator(.{}),
 
pub fn next(self: *Iterator) ?Key {
return if (self.inner.next()) |index|
Indexer.keyForIndex(index)
else
null;
}
};
};
return IndexedSet(EnumIndexer(E), mixin.EnumSetExt);
}
 
/// A map keyed by an enum, backed by a bitfield and a dense array.
@@ -269,58 +416,211 @@ pub fn EnumSet(comptime E: type) type {
/// enum values to dense indices. This type does no dynamic
/// allocation and can be copied by value.
pub fn EnumMap(comptime E: type, comptime V: type) type {
const mixin = struct {
fn EnumMapExt(comptime Self: type) type {
const Indexer = Self.Indexer;
return struct {
/// Initializes the map using a sparse struct of optionals
pub fn init(init_values: EnumFieldStruct(E, ?V, @as(?V, null))) Self {
var result = Self{};
comptime var i: usize = 0;
inline while (i < Self.len) : (i += 1) {
const key = comptime Indexer.keyForIndex(i);
const tag = comptime @tagName(key);
if (@field(init_values, tag)) |*v| {
result.bits.set(i);
result.values[i] = v.*;
}
}
return result;
}
/// Initializes a full mapping with all keys set to value.
/// Consider using EnumArray instead if the map will remain full.
pub fn initFull(value: V) Self {
var result = Self{
.bits = Self.BitSet.initFull(),
.values = undefined,
};
@memset(&result.values, value);
return result;
}
/// Initializes a full mapping with supplied values.
/// Consider using EnumArray instead if the map will remain full.
pub fn initFullWith(init_values: EnumFieldStruct(E, V, @as(?V, null))) Self {
return initFullWithDefault(@as(?V, null), init_values);
}
/// Initializes a full mapping with a provided default.
/// Consider using EnumArray instead if the map will remain full.
pub fn initFullWithDefault(comptime default: ?V, init_values: EnumFieldStruct(E, V, default)) Self {
var result = Self{
.bits = Self.BitSet.initFull(),
.values = undefined,
};
comptime var i: usize = 0;
inline while (i < Self.len) : (i += 1) {
const key = comptime Indexer.keyForIndex(i);
const tag = comptime @tagName(key);
result.values[i] = @field(init_values, tag);
}
return result;
return struct {
const Self = @This();
 
/// The index mapping for this map
pub const Indexer = EnumIndexer(E);
/// The key type used to index this map
pub const Key = Indexer.Key;
/// The value type stored in this map
pub const Value = V;
/// The number of possible keys in the map
pub const len = Indexer.count;
 
const BitSet = std.StaticBitSet(Indexer.count);
 
/// Bits determining whether items are in the map
bits: BitSet = BitSet.initEmpty(),
/// Values of items in the map. If the associated
/// bit is zero, the value is undefined.
values: [Indexer.count]Value = undefined,
 
/// Initializes the map using a sparse struct of optionals
pub fn init(init_values: EnumFieldStruct(E, ?Value, null)) Self {
var result: Self = .{};
inline for (0..Self.len) |i| {
const key = comptime Indexer.keyForIndex(i);
const tag = @tagName(key);
if (@field(init_values, tag)) |*v| {
result.bits.set(i);
result.values[i] = v.*;
}
}
}
 
/// Initializes a full mapping with all keys set to value.
/// Consider using EnumArray instead if the map will remain full.
pub fn initFull(value: Value) Self {
var result: Self = .{
.bits = Self.BitSet.initFull(),
.values = undefined,
};
@memset(&result.values, value);
return result;
}
 
/// Initializes a full mapping with supplied values.
/// Consider using EnumArray instead if the map will remain full.
pub fn initFullWith(init_values: EnumFieldStruct(E, Value, null)) Self {
return initFullWithDefault(null, init_values);
}
 
/// Initializes a full mapping with a provided default.
/// Consider using EnumArray instead if the map will remain full.
pub fn initFullWithDefault(comptime default: ?Value, init_values: EnumFieldStruct(E, Value, default)) Self {
var result: Self = .{
.bits = Self.BitSet.initFull(),
.values = undefined,
};
inline for (0..Self.len) |i| {
const key = comptime Indexer.keyForIndex(i);
const tag = @tagName(key);
result.values[i] = @field(init_values, tag);
}
return result;
}
 
/// The number of items in the map.
pub fn count(self: Self) usize {
return self.bits.count();
}
 
/// Checks if the map contains an item.
pub fn contains(self: Self, key: Key) bool {
return self.bits.isSet(Indexer.indexOf(key));
}
 
/// Gets the value associated with a key.
/// If the key is not in the map, returns null.
pub fn get(self: Self, key: Key) ?Value {
const index = Indexer.indexOf(key);
return if (self.bits.isSet(index)) self.values[index] else null;
}
 
/// Gets the value associated with a key, which must
/// exist in the map.
pub fn getAssertContains(self: Self, key: Key) Value {
const index = Indexer.indexOf(key);
assert(self.bits.isSet(index));
return self.values[index];
}
 
/// Gets the address of the value associated with a key.
/// If the key is not in the map, returns null.
pub fn getPtr(self: *Self, key: Key) ?*Value {
const index = Indexer.indexOf(key);
return if (self.bits.isSet(index)) &self.values[index] else null;
}
 
/// Gets the address of the const value associated with a key.
/// If the key is not in the map, returns null.
pub fn getPtrConst(self: *const Self, key: Key) ?*const Value {
const index = Indexer.indexOf(key);
return if (self.bits.isSet(index)) &self.values[index] else null;
}
 
/// Gets the address of the value associated with a key.
/// The key must be present in the map.
pub fn getPtrAssertContains(self: *Self, key: Key) *Value {
const index = Indexer.indexOf(key);
assert(self.bits.isSet(index));
return &self.values[index];
}
 
/// Gets the address of the const value associated with a key.
/// The key must be present in the map.
pub fn getPtrConstAssertContains(self: *const Self, key: Key) *const Value {
const index = Indexer.indexOf(key);
assert(self.bits.isSet(index));
return &self.values[index];
}
 
/// Adds the key to the map with the supplied value.
/// If the key is already in the map, overwrites the value.
pub fn put(self: *Self, key: Key, value: Value) void {
const index = Indexer.indexOf(key);
self.bits.set(index);
self.values[index] = value;
}
 
/// Adds the key to the map with an undefined value.
/// If the key is already in the map, the value becomes undefined.
/// A pointer to the value is returned, which should be
/// used to initialize the value.
pub fn putUninitialized(self: *Self, key: Key) *Value {
const index = Indexer.indexOf(key);
self.bits.set(index);
self.values[index] = undefined;
return &self.values[index];
}
 
/// Sets the value associated with the key in the map,
/// and returns the old value. If the key was not in
/// the map, returns null.
pub fn fetchPut(self: *Self, key: Key, value: Value) ?Value {
const index = Indexer.indexOf(key);
const result: ?Value = if (self.bits.isSet(index)) self.values[index] else null;
self.bits.set(index);
self.values[index] = value;
return result;
}
 
/// Removes a key from the map. If the key was not in the map,
/// does nothing.
pub fn remove(self: *Self, key: Key) void {
const index = Indexer.indexOf(key);
self.bits.unset(index);
self.values[index] = undefined;
}
 
/// Removes a key from the map, and returns the old value.
/// If the key was not in the map, returns null.
pub fn fetchRemove(self: *Self, key: Key) ?Value {
const index = Indexer.indexOf(key);
const result: ?Value = if (self.bits.isSet(index)) self.values[index] else null;
self.bits.unset(index);
self.values[index] = undefined;
return result;
}
 
/// Returns an iterator over the map, which visits items in index order.
/// Modifications to the underlying map may or may not be observed by
/// the iterator, but will not invalidate it.
pub fn iterator(self: *Self) Iterator {
return .{
.inner = self.bits.iterator(.{}),
.values = &self.values,
};
}
 
/// An entry in the map.
pub const Entry = struct {
/// The key associated with this entry.
/// Modifying this key will not change the map.
key: Key,
 
/// A pointer to the value in the map associated
/// with this key. Modifications through this
/// pointer will modify the underlying data.
value: *Value,
};
 
pub const Iterator = struct {
inner: BitSet.Iterator(.{}),
values: *[Indexer.count]Value,
 
pub fn next(self: *Iterator) ?Entry {
return if (self.inner.next()) |index|
Entry{
.key = Indexer.keyForIndex(index),
.value = &self.values[index],
}
else
null;
}
};
};
return IndexedMap(EnumIndexer(E), V, mixin.EnumMapExt);
}
 
/// A multiset of enum elements up to a count of usize. Backed
@@ -724,197 +1024,98 @@ test EnumMultiset {
/// enum values to dense indices. This type does no dynamic
/// allocation and can be copied by value.
pub fn EnumArray(comptime E: type, comptime V: type) type {
const mixin = struct {
fn EnumArrayExt(comptime Self: type) type {
const Indexer = Self.Indexer;
return struct {
/// Initializes all values in the enum array
pub fn init(init_values: EnumFieldStruct(E, V, @as(?V, null))) Self {
return initDefault(@as(?V, null), init_values);
}
 
/// Initializes values in the enum array, with the specified default.
pub fn initDefault(comptime default: ?V, init_values: EnumFieldStruct(E, V, default)) Self {
var result = Self{ .values = undefined };
comptime var i: usize = 0;
inline while (i < Self.len) : (i += 1) {
const key = comptime Indexer.keyForIndex(i);
const tag = @tagName(key);
result.values[i] = @field(init_values, tag);
}
return result;
}
};
}
};
return IndexedArray(EnumIndexer(E), V, mixin.EnumArrayExt);
}
 
fn NoExtension(comptime Self: type) type {
_ = Self;
return NoExt;
}
const NoExt = struct {};
 
/// A set type with an Indexer mapping from keys to indices.
/// Presence or absence is stored as a dense bitfield. This
/// type does no allocation and can be copied by value.
pub fn IndexedSet(comptime I: type, comptime Ext: ?fn (type) type) type {
comptime ensureIndexer(I);
return struct {
const Self = @This();
 
pub usingnamespace (Ext orelse NoExtension)(Self);
 
/// The indexing rules for converting between keys and indices.
pub const Indexer = I;
/// The element type for this set.
/// The index mapping for this map
pub const Indexer = EnumIndexer(E);
/// The key type used to index this map
pub const Key = Indexer.Key;
 
const BitSet = std.StaticBitSet(Indexer.count);
 
/// The maximum number of items in this set.
/// The value type stored in this map
pub const Value = V;
/// The number of possible keys in the map
pub const len = Indexer.count;
 
bits: BitSet = BitSet.initEmpty(),
values: [Indexer.count]Value,
 
/// Returns a set containing no keys.
pub fn initEmpty() Self {
return .{ .bits = BitSet.initEmpty() };
pub fn init(init_values: EnumFieldStruct(E, Value, null)) Self {
return initDefault(null, init_values);
}
 
/// Returns a set containing all possible keys.
pub fn initFull() Self {
return .{ .bits = BitSet.initFull() };
/// Initializes values in the enum array, with the specified default.
pub fn initDefault(comptime default: ?Value, init_values: EnumFieldStruct(E, Value, default)) Self {
var result: Self = .{ .values = undefined };
inline for (0..Self.len) |i| {
const key = comptime Indexer.keyForIndex(i);
const tag = @tagName(key);
result.values[i] = @field(init_values, tag);
}
return result;
}
 
/// Returns a set containing multiple keys.
pub fn initMany(keys: []const Key) Self {
var set = initEmpty();
for (keys) |key| set.insert(key);
return set;
pub fn initUndefined() Self {
return Self{ .values = undefined };
}
 
/// Returns a set containing a single key.
pub fn initOne(key: Key) Self {
return initMany(&[_]Key{key});
pub fn initFill(v: Value) Self {
var self: Self = undefined;
@memset(&self.values, v);
return self;
}
 
/// Returns the number of keys in the set.
pub fn count(self: Self) usize {
return self.bits.count();
/// Returns the value in the array associated with a key.
pub fn get(self: Self, key: Key) Value {
return self.values[Indexer.indexOf(key)];
}
 
/// Checks if a key is in the set.
pub fn contains(self: Self, key: Key) bool {
return self.bits.isSet(Indexer.indexOf(key));
/// Returns a pointer to the slot in the array associated with a key.
pub fn getPtr(self: *Self, key: Key) *Value {
return &self.values[Indexer.indexOf(key)];
}
 
/// Puts a key in the set.
pub fn insert(self: *Self, key: Key) void {
self.bits.set(Indexer.indexOf(key));
/// Returns a const pointer to the slot in the array associated with a key.
pub fn getPtrConst(self: *const Self, key: Key) *const Value {
return &self.values[Indexer.indexOf(key)];
}
 
/// Removes a key from the set.
pub fn remove(self: *Self, key: Key) void {
self.bits.unset(Indexer.indexOf(key));
/// Sets the value in the slot associated with a key.
pub fn set(self: *Self, key: Key, value: Value) void {
self.values[Indexer.indexOf(key)] = value;
}
 
/// Changes the presence of a key in the set to match the passed bool.
pub fn setPresent(self: *Self, key: Key, present: bool) void {
self.bits.setValue(Indexer.indexOf(key), present);
/// Iterates over the items in the array, in index order.
pub fn iterator(self: *Self) Iterator {
return .{
.values = &self.values,
};
}
 
/// Toggles the presence of a key in the set. If the key is in
/// the set, removes it. Otherwise adds it.
pub fn toggle(self: *Self, key: Key) void {
self.bits.toggle(Indexer.indexOf(key));
}
/// An entry in the array.
pub const Entry = struct {
/// The key associated with this entry.
/// Modifying this key will not change the array.
key: Key,
 
/// Toggles the presence of all keys in the passed set.
pub fn toggleSet(self: *Self, other: Self) void {
self.bits.toggleSet(other.bits);
}
 
/// Toggles all possible keys in the set.
pub fn toggleAll(self: *Self) void {
self.bits.toggleAll();
}
 
/// Adds all keys in the passed set to this set.
pub fn setUnion(self: *Self, other: Self) void {
self.bits.setUnion(other.bits);
}
 
/// Removes all keys which are not in the passed set.
pub fn setIntersection(self: *Self, other: Self) void {
self.bits.setIntersection(other.bits);
}
 
/// Returns true iff both sets have the same keys.
pub fn eql(self: Self, other: Self) bool {
return self.bits.eql(other.bits);
}
 
/// Returns true iff all the keys in this set are
/// in the other set. The other set may have keys
/// not found in this set.
pub fn subsetOf(self: Self, other: Self) bool {
return self.bits.subsetOf(other.bits);
}
 
/// Returns true iff this set contains all the keys
/// in the other set. This set may have keys not
/// found in the other set.
pub fn supersetOf(self: Self, other: Self) bool {
return self.bits.supersetOf(other.bits);
}
 
/// Returns a set with all the keys not in this set.
pub fn complement(self: Self) Self {
return .{ .bits = self.bits.complement() };
}
 
/// Returns a set with keys that are in either this
/// set or the other set.
pub fn unionWith(self: Self, other: Self) Self {
return .{ .bits = self.bits.unionWith(other.bits) };
}
 
/// Returns a set with keys that are in both this
/// set and the other set.
pub fn intersectWith(self: Self, other: Self) Self {
return .{ .bits = self.bits.intersectWith(other.bits) };
}
 
/// Returns a set with keys that are in either this
/// set or the other set, but not both.
pub fn xorWith(self: Self, other: Self) Self {
return .{ .bits = self.bits.xorWith(other.bits) };
}
 
/// Returns a set with keys that are in this set
/// except for keys in the other set.
pub fn differenceWith(self: Self, other: Self) Self {
return .{ .bits = self.bits.differenceWith(other.bits) };
}
 
/// Returns an iterator over this set, which iterates in
/// index order. Modifications to the set during iteration
/// may or may not be observed by the iterator, but will
/// not invalidate it.
pub fn iterator(self: *const Self) Iterator {
return .{ .inner = self.bits.iterator(.{}) };
}
/// A pointer to the value in the array associated
/// with this key. Modifications through this
/// pointer will modify the underlying data.
value: *Value,
};
 
pub const Iterator = struct {
inner: BitSet.Iterator(.{}),
index: usize = 0,
values: *[Indexer.count]Value,
 
pub fn next(self: *Iterator) ?Key {
return if (self.inner.next()) |index|
Indexer.keyForIndex(index)
else
null;
pub fn next(self: *Iterator) ?Entry {
const index = self.index;
if (index < Indexer.count) {
self.index += 1;
return Entry{
.key = Indexer.keyForIndex(index),
.value = &self.values[index],
};
}
return null;
}
};
};
@@ -1012,305 +1213,6 @@ test "EnumSet const iterator" {
try testing.expect(result.eql(diag_move));
}
 
/// A map from keys to values, using an index lookup. Uses a
/// bitfield to track presence and a dense array of values.
/// This type does no allocation and can be copied by value.
pub fn IndexedMap(comptime I: type, comptime V: type, comptime Ext: ?fn (type) type) type {
comptime ensureIndexer(I);
return struct {
const Self = @This();
 
pub usingnamespace (Ext orelse NoExtension)(Self);
 
/// The index mapping for this map
pub const Indexer = I;
/// The key type used to index this map
pub const Key = Indexer.Key;
/// The value type stored in this map
pub const Value = V;
/// The number of possible keys in the map
pub const len = Indexer.count;
 
const BitSet = std.StaticBitSet(Indexer.count);
 
/// Bits determining whether items are in the map
bits: BitSet = BitSet.initEmpty(),
/// Values of items in the map. If the associated
/// bit is zero, the value is undefined.
values: [Indexer.count]Value = undefined,
 
/// The number of items in the map.
pub fn count(self: Self) usize {
return self.bits.count();
}
 
/// Checks if the map contains an item.
pub fn contains(self: Self, key: Key) bool {
return self.bits.isSet(Indexer.indexOf(key));
}
 
/// Gets the value associated with a key.
/// If the key is not in the map, returns null.
pub fn get(self: Self, key: Key) ?Value {
const index = Indexer.indexOf(key);
return if (self.bits.isSet(index)) self.values[index] else null;
}
 
/// Gets the value associated with a key, which must
/// exist in the map.
pub fn getAssertContains(self: Self, key: Key) Value {
const index = Indexer.indexOf(key);
assert(self.bits.isSet(index));
return self.values[index];
}
 
/// Gets the address of the value associated with a key.
/// If the key is not in the map, returns null.
pub fn getPtr(self: *Self, key: Key) ?*Value {
const index = Indexer.indexOf(key);
return if (self.bits.isSet(index)) &self.values[index] else null;
}
 
/// Gets the address of the const value associated with a key.
/// If the key is not in the map, returns null.
pub fn getPtrConst(self: *const Self, key: Key) ?*const Value {
const index = Indexer.indexOf(key);
return if (self.bits.isSet(index)) &self.values[index] else null;
}
 
/// Gets the address of the value associated with a key.
/// The key must be present in the map.
pub fn getPtrAssertContains(self: *Self, key: Key) *Value {
const index = Indexer.indexOf(key);
assert(self.bits.isSet(index));
return &self.values[index];
}
 
/// Gets the address of the const value associated with a key.
/// The key must be present in the map.
pub fn getPtrConstAssertContains(self: *const Self, key: Key) *const Value {
const index = Indexer.indexOf(key);
assert(self.bits.isSet(index));
return &self.values[index];
}
 
/// Adds the key to the map with the supplied value.
/// If the key is already in the map, overwrites the value.
pub fn put(self: *Self, key: Key, value: Value) void {
const index = Indexer.indexOf(key);
self.bits.set(index);
self.values[index] = value;
}
 
/// Adds the key to the map with an undefined value.
/// If the key is already in the map, the value becomes undefined.
/// A pointer to the value is returned, which should be
/// used to initialize the value.
pub fn putUninitialized(self: *Self, key: Key) *Value {
const index = Indexer.indexOf(key);
self.bits.set(index);
self.values[index] = undefined;
return &self.values[index];
}
 
/// Sets the value associated with the key in the map,
/// and returns the old value. If the key was not in
/// the map, returns null.
pub fn fetchPut(self: *Self, key: Key, value: Value) ?Value {
const index = Indexer.indexOf(key);
const result: ?Value = if (self.bits.isSet(index)) self.values[index] else null;
self.bits.set(index);
self.values[index] = value;
return result;
}
 
/// Removes a key from the map. If the key was not in the map,
/// does nothing.
pub fn remove(self: *Self, key: Key) void {
const index = Indexer.indexOf(key);
self.bits.unset(index);
self.values[index] = undefined;
}
 
/// Removes a key from the map, and returns the old value.
/// If the key was not in the map, returns null.
pub fn fetchRemove(self: *Self, key: Key) ?Value {
const index = Indexer.indexOf(key);
const result: ?Value = if (self.bits.isSet(index)) self.values[index] else null;
self.bits.unset(index);
self.values[index] = undefined;
return result;
}
 
/// Returns an iterator over the map, which visits items in index order.
/// Modifications to the underlying map may or may not be observed by
/// the iterator, but will not invalidate it.
pub fn iterator(self: *Self) Iterator {
return .{
.inner = self.bits.iterator(.{}),
.values = &self.values,
};
}
 
/// An entry in the map.
pub const Entry = struct {
/// The key associated with this entry.
/// Modifying this key will not change the map.
key: Key,
 
/// A pointer to the value in the map associated
/// with this key. Modifications through this
/// pointer will modify the underlying data.
value: *Value,
};
 
pub const Iterator = struct {
inner: BitSet.Iterator(.{}),
values: *[Indexer.count]Value,
 
pub fn next(self: *Iterator) ?Entry {
return if (self.inner.next()) |index|
Entry{
.key = Indexer.keyForIndex(index),
.value = &self.values[index],
}
else
null;
}
};
};
}
 
/// A dense array of values, using an indexed lookup.
/// This type does no allocation and can be copied by value.
pub fn IndexedArray(comptime I: type, comptime V: type, comptime Ext: ?fn (type) type) type {
comptime ensureIndexer(I);
return struct {
const Self = @This();
 
pub usingnamespace (Ext orelse NoExtension)(Self);
 
/// The index mapping for this map
pub const Indexer = I;
/// The key type used to index this map
pub const Key = Indexer.Key;
/// The value type stored in this map
pub const Value = V;
/// The number of possible keys in the map
pub const len = Indexer.count;
 
values: [Indexer.count]Value,
 
pub fn initUndefined() Self {
return Self{ .values = undefined };
}
 
pub fn initFill(v: Value) Self {
var self: Self = undefined;
@memset(&self.values, v);
return self;
}
 
/// Returns the value in the array associated with a key.
pub fn get(self: Self, key: Key) Value {
return self.values[Indexer.indexOf(key)];
}
 
/// Returns a pointer to the slot in the array associated with a key.
pub fn getPtr(self: *Self, key: Key) *Value {
return &self.values[Indexer.indexOf(key)];
}
 
/// Returns a const pointer to the slot in the array associated with a key.
pub fn getPtrConst(self: *const Self, key: Key) *const Value {
return &self.values[Indexer.indexOf(key)];
}
 
/// Sets the value in the slot associated with a key.
pub fn set(self: *Self, key: Key, value: Value) void {
self.values[Indexer.indexOf(key)] = value;
}
 
/// Iterates over the items in the array, in index order.
pub fn iterator(self: *Self) Iterator {
return .{
.values = &self.values,
};
}
 
/// An entry in the array.
pub const Entry = struct {
/// The key associated with this entry.
/// Modifying this key will not change the array.
key: Key,
 
/// A pointer to the value in the array associated
/// with this key. Modifications through this
/// pointer will modify the underlying data.
value: *Value,
};
 
pub const Iterator = struct {
index: usize = 0,
values: *[Indexer.count]Value,
 
pub fn next(self: *Iterator) ?Entry {
const index = self.index;
if (index < Indexer.count) {
self.index += 1;
return Entry{
.key = Indexer.keyForIndex(index),
.value = &self.values[index],
};
}
return null;
}
};
};
}
 
/// Verifies that a type is a valid Indexer, providing a helpful
/// compile error if not. An Indexer maps a comptime-known set
/// of keys to a dense set of zero-based indices.
/// The indexer interface must look like this:
/// ```
/// struct {
/// /// The key type which this indexer converts to indices
/// pub const Key: type,
/// /// The number of indexes in the dense mapping
/// pub const count: comptime_int,
/// /// Converts from a key to an index
/// pub fn indexOf(Key) usize;
/// /// Converts from an index to a key
/// pub fn keyForIndex(usize) Key;
/// }
/// ```
pub fn ensureIndexer(comptime T: type) void {
comptime {
if (!@hasDecl(T, "Key")) @compileError("Indexer must have decl Key: type.");
if (@TypeOf(T.Key) != type) @compileError("Indexer.Key must be a type.");
if (!@hasDecl(T, "count")) @compileError("Indexer must have decl count: comptime_int.");
if (@TypeOf(T.count) != comptime_int) @compileError("Indexer.count must be a comptime_int.");
if (!@hasDecl(T, "indexOf")) @compileError("Indexer.indexOf must be a fn (Key) usize.");
if (@TypeOf(T.indexOf) != fn (T.Key) usize) @compileError("Indexer must have decl indexOf: fn (Key) usize.");
if (!@hasDecl(T, "keyForIndex")) @compileError("Indexer must have decl keyForIndex: fn (usize) Key.");
if (@TypeOf(T.keyForIndex) != fn (usize) T.Key) @compileError("Indexer.keyForIndex must be a fn (usize) Key.");
}
}
 
test ensureIndexer {
ensureIndexer(struct {
pub const Key = u32;
pub const count: comptime_int = 8;
pub fn indexOf(k: Key) usize {
return @as(usize, @intCast(k));
}
pub fn keyForIndex(index: usize) Key {
return @as(Key, @intCast(index));
}
});
}
 
pub fn EnumIndexer(comptime E: type) type {
if (!@typeInfo(E).Enum.is_exhaustive) {
const BackingInt = @typeInfo(E).Enum.tag_type;
@@ -1438,7 +1340,6 @@ test "EnumIndexer non-exhaustive" {
_,
};
const Indexer = EnumIndexer(E);
ensureIndexer(Indexer);
 
const min_tag: E = @enumFromInt(std.math.minInt(BackingInt));
const max_tag: E = @enumFromInt(std.math.maxInt(BackingInt));
@@ -1466,7 +1367,6 @@ test "EnumIndexer non-exhaustive" {
test "EnumIndexer dense zeroed" {
const E = enum(u2) { b = 1, a = 0, c = 2 };
const Indexer = EnumIndexer(E);
ensureIndexer(Indexer);
try testing.expectEqual(E, Indexer.Key);
try testing.expectEqual(3, Indexer.count);
 
@@ -1482,7 +1382,6 @@ test "EnumIndexer dense zeroed" {
test "EnumIndexer dense positive" {
const E = enum(u4) { c = 6, a = 4, b = 5 };
const Indexer = EnumIndexer(E);
ensureIndexer(Indexer);
try testing.expectEqual(E, Indexer.Key);
try testing.expectEqual(3, Indexer.count);
 
@@ -1498,7 +1397,6 @@ test "EnumIndexer dense positive" {
test "EnumIndexer dense negative" {
const E = enum(i4) { a = -6, c = -4, b = -5 };
const Indexer = EnumIndexer(E);
ensureIndexer(Indexer);
try testing.expectEqual(E, Indexer.Key);
try testing.expectEqual(3, Indexer.count);
 
@@ -1514,7 +1412,6 @@ test "EnumIndexer dense negative" {
test "EnumIndexer sparse" {
const E = enum(i4) { a = -2, c = 6, b = 4 };
const Indexer = EnumIndexer(E);
ensureIndexer(Indexer);
try testing.expectEqual(E, Indexer.Key);
try testing.expectEqual(3, Indexer.count);
 
@@ -1530,7 +1427,6 @@ test "EnumIndexer sparse" {
test "EnumIndexer empty" {
const E = enum {};
const Indexer = EnumIndexer(E);
ensureIndexer(Indexer);
try testing.expectEqual(E, Indexer.Key);
try testing.expectEqual(0, Indexer.count);
}
 
lib/std/os/linux.zig added: 2966, removed: 3062, total 0
@@ -383,25 +383,24 @@ pub const O = switch (native_arch) {
else => @compileError("missing std.os.linux.O constants for this architecture"),
};
 
pub usingnamespace @import("linux/io_uring.zig");
 
/// Set by startup code, used by `getauxval`.
pub var elf_aux_maybe: ?[*]std.elf.Auxv = null;
 
pub usingnamespace if (switch (builtin.zig_backend) {
const extern_getauxval = switch (builtin.zig_backend) {
// Calling extern functions is not yet supported with these backends
.stage2_aarch64, .stage2_arm, .stage2_riscv64, .stage2_sparc64 => false,
else => !builtin.link_libc,
}) struct {
/// See `std.elf` for the constants.
/// This matches the libc getauxval function.
pub extern fn getauxval(index: usize) usize;
comptime {
};
 
comptime {
if (extern_getauxval) {
@export(getauxvalImpl, .{ .name = "getauxval", .linkage = .Weak });
}
} else struct {
pub const getauxval = getauxvalImpl;
};
}
 
pub const getauxval = if (extern_getauxval) struct {
extern fn getauxval(index: usize) usize;
}.getauxval else getauxvalImpl;
 
fn getauxvalImpl(index: usize) callconv(.C) usize {
const auxv = elf_aux_maybe orelse return 0;
@@ -2823,284 +2822,282 @@ pub const AF = struct {
pub const MAX = PF.MAX;
};
 
pub const SO = struct {
pub usingnamespace if (is_mips) struct {
pub const DEBUG = 1;
pub const REUSEADDR = 0x0004;
pub const KEEPALIVE = 0x0008;
pub const DONTROUTE = 0x0010;
pub const BROADCAST = 0x0020;
pub const LINGER = 0x0080;
pub const OOBINLINE = 0x0100;
pub const REUSEPORT = 0x0200;
pub const SNDBUF = 0x1001;
pub const RCVBUF = 0x1002;
pub const SNDLOWAT = 0x1003;
pub const RCVLOWAT = 0x1004;
pub const RCVTIMEO = 0x1006;
pub const SNDTIMEO = 0x1005;
pub const ERROR = 0x1007;
pub const TYPE = 0x1008;
pub const ACCEPTCONN = 0x1009;
pub const PROTOCOL = 0x1028;
pub const DOMAIN = 0x1029;
pub const NO_CHECK = 11;
pub const PRIORITY = 12;
pub const BSDCOMPAT = 14;
pub const PASSCRED = 17;
pub const PEERCRED = 18;
pub const PEERSEC = 30;
pub const SNDBUFFORCE = 31;
pub const RCVBUFFORCE = 33;
pub const SECURITY_AUTHENTICATION = 22;
pub const SECURITY_ENCRYPTION_TRANSPORT = 23;
pub const SECURITY_ENCRYPTION_NETWORK = 24;
pub const BINDTODEVICE = 25;
pub const ATTACH_FILTER = 26;
pub const DETACH_FILTER = 27;
pub const GET_FILTER = ATTACH_FILTER;
pub const PEERNAME = 28;
pub const TIMESTAMP_OLD = 29;
pub const PASSSEC = 34;
pub const TIMESTAMPNS_OLD = 35;
pub const MARK = 36;
pub const TIMESTAMPING_OLD = 37;
pub const RXQ_OVFL = 40;
pub const WIFI_STATUS = 41;
pub const PEEK_OFF = 42;
pub const NOFCS = 43;
pub const LOCK_FILTER = 44;
pub const SELECT_ERR_QUEUE = 45;
pub const BUSY_POLL = 46;
pub const MAX_PACING_RATE = 47;
pub const BPF_EXTENSIONS = 48;
pub const INCOMING_CPU = 49;
pub const ATTACH_BPF = 50;
pub const DETACH_BPF = DETACH_FILTER;
pub const ATTACH_REUSEPORT_CBPF = 51;
pub const ATTACH_REUSEPORT_EBPF = 52;
pub const CNX_ADVICE = 53;
pub const MEMINFO = 55;
pub const INCOMING_NAPI_ID = 56;
pub const COOKIE = 57;
pub const PEERGROUPS = 59;
pub const ZEROCOPY = 60;
pub const TXTIME = 61;
pub const BINDTOIFINDEX = 62;
pub const TIMESTAMP_NEW = 63;
pub const TIMESTAMPNS_NEW = 64;
pub const TIMESTAMPING_NEW = 65;
pub const RCVTIMEO_NEW = 66;
pub const SNDTIMEO_NEW = 67;
pub const DETACH_REUSEPORT_BPF = 68;
} else if (is_ppc or is_ppc64) struct {
pub const DEBUG = 1;
pub const REUSEADDR = 2;
pub const TYPE = 3;
pub const ERROR = 4;
pub const DONTROUTE = 5;
pub const BROADCAST = 6;
pub const SNDBUF = 7;
pub const RCVBUF = 8;
pub const KEEPALIVE = 9;
pub const OOBINLINE = 10;
pub const NO_CHECK = 11;
pub const PRIORITY = 12;
pub const LINGER = 13;
pub const BSDCOMPAT = 14;
pub const REUSEPORT = 15;
pub const RCVLOWAT = 16;
pub const SNDLOWAT = 17;
pub const RCVTIMEO = 18;
pub const SNDTIMEO = 19;
pub const PASSCRED = 20;
pub const PEERCRED = 21;
pub const ACCEPTCONN = 30;
pub const PEERSEC = 31;
pub const SNDBUFFORCE = 32;
pub const RCVBUFFORCE = 33;
pub const PROTOCOL = 38;
pub const DOMAIN = 39;
pub const SECURITY_AUTHENTICATION = 22;
pub const SECURITY_ENCRYPTION_TRANSPORT = 23;
pub const SECURITY_ENCRYPTION_NETWORK = 24;
pub const BINDTODEVICE = 25;
pub const ATTACH_FILTER = 26;
pub const DETACH_FILTER = 27;
pub const GET_FILTER = ATTACH_FILTER;
pub const PEERNAME = 28;
pub const TIMESTAMP_OLD = 29;
pub const PASSSEC = 34;
pub const TIMESTAMPNS_OLD = 35;
pub const MARK = 36;
pub const TIMESTAMPING_OLD = 37;
pub const RXQ_OVFL = 40;
pub const WIFI_STATUS = 41;
pub const PEEK_OFF = 42;
pub const NOFCS = 43;
pub const LOCK_FILTER = 44;
pub const SELECT_ERR_QUEUE = 45;
pub const BUSY_POLL = 46;
pub const MAX_PACING_RATE = 47;
pub const BPF_EXTENSIONS = 48;
pub const INCOMING_CPU = 49;
pub const ATTACH_BPF = 50;
pub const DETACH_BPF = DETACH_FILTER;
pub const ATTACH_REUSEPORT_CBPF = 51;
pub const ATTACH_REUSEPORT_EBPF = 52;
pub const CNX_ADVICE = 53;
pub const MEMINFO = 55;
pub const INCOMING_NAPI_ID = 56;
pub const COOKIE = 57;
pub const PEERGROUPS = 59;
pub const ZEROCOPY = 60;
pub const TXTIME = 61;
pub const BINDTOIFINDEX = 62;
pub const TIMESTAMP_NEW = 63;
pub const TIMESTAMPNS_NEW = 64;
pub const TIMESTAMPING_NEW = 65;
pub const RCVTIMEO_NEW = 66;
pub const SNDTIMEO_NEW = 67;
pub const DETACH_REUSEPORT_BPF = 68;
} else if (is_sparc) struct {
pub const DEBUG = 1;
pub const REUSEADDR = 4;
pub const TYPE = 4104;
pub const ERROR = 4103;
pub const DONTROUTE = 16;
pub const BROADCAST = 32;
pub const SNDBUF = 4097;
pub const RCVBUF = 4098;
pub const KEEPALIVE = 8;
pub const OOBINLINE = 256;
pub const NO_CHECK = 11;
pub const PRIORITY = 12;
pub const LINGER = 128;
pub const BSDCOMPAT = 1024;
pub const REUSEPORT = 512;
pub const PASSCRED = 2;
pub const PEERCRED = 64;
pub const RCVLOWAT = 2048;
pub const SNDLOWAT = 4096;
pub const RCVTIMEO = 8192;
pub const SNDTIMEO = 16384;
pub const ACCEPTCONN = 32768;
pub const PEERSEC = 30;
pub const SNDBUFFORCE = 4106;
pub const RCVBUFFORCE = 4107;
pub const PROTOCOL = 4136;
pub const DOMAIN = 4137;
pub const SECURITY_AUTHENTICATION = 20481;
pub const SECURITY_ENCRYPTION_TRANSPORT = 20482;
pub const SECURITY_ENCRYPTION_NETWORK = 20484;
pub const BINDTODEVICE = 13;
pub const ATTACH_FILTER = 26;
pub const DETACH_FILTER = 27;
pub const GET_FILTER = 26;
pub const PEERNAME = 28;
pub const TIMESTAMP_OLD = 29;
pub const PASSSEC = 31;
pub const TIMESTAMPNS_OLD = 33;
pub const MARK = 34;
pub const TIMESTAMPING_OLD = 35;
pub const RXQ_OVFL = 36;
pub const WIFI_STATUS = 37;
pub const PEEK_OFF = 38;
pub const NOFCS = 39;
pub const LOCK_FILTER = 40;
pub const SELECT_ERR_QUEUE = 41;
pub const BUSY_POLL = 48;
pub const MAX_PACING_RATE = 49;
pub const BPF_EXTENSIONS = 50;
pub const INCOMING_CPU = 51;
pub const ATTACH_BPF = 52;
pub const DETACH_BPF = 27;
pub const ATTACH_REUSEPORT_CBPF = 53;
pub const ATTACH_REUSEPORT_EBPF = 54;
pub const CNX_ADVICE = 55;
pub const MEMINFO = 57;
pub const INCOMING_NAPI_ID = 58;
pub const COOKIE = 59;
pub const PEERGROUPS = 61;
pub const ZEROCOPY = 62;
pub const TXTIME = 63;
pub const BINDTOIFINDEX = 65;
pub const TIMESTAMP_NEW = 70;
pub const TIMESTAMPNS_NEW = 66;
pub const TIMESTAMPING_NEW = 67;
pub const RCVTIMEO_NEW = 68;
pub const SNDTIMEO_NEW = 69;
pub const DETACH_REUSEPORT_BPF = 71;
} else struct {
pub const DEBUG = 1;
pub const REUSEADDR = 2;
pub const TYPE = 3;
pub const ERROR = 4;
pub const DONTROUTE = 5;
pub const BROADCAST = 6;
pub const SNDBUF = 7;
pub const RCVBUF = 8;
pub const KEEPALIVE = 9;
pub const OOBINLINE = 10;
pub const NO_CHECK = 11;
pub const PRIORITY = 12;
pub const LINGER = 13;
pub const BSDCOMPAT = 14;
pub const REUSEPORT = 15;
pub const PASSCRED = 16;
pub const PEERCRED = 17;
pub const RCVLOWAT = 18;
pub const SNDLOWAT = 19;
pub const RCVTIMEO = 20;
pub const SNDTIMEO = 21;
pub const ACCEPTCONN = 30;
pub const PEERSEC = 31;
pub const SNDBUFFORCE = 32;
pub const RCVBUFFORCE = 33;
pub const PROTOCOL = 38;
pub const DOMAIN = 39;
pub const SECURITY_AUTHENTICATION = 22;
pub const SECURITY_ENCRYPTION_TRANSPORT = 23;
pub const SECURITY_ENCRYPTION_NETWORK = 24;
pub const BINDTODEVICE = 25;
pub const ATTACH_FILTER = 26;
pub const DETACH_FILTER = 27;
pub const GET_FILTER = ATTACH_FILTER;
pub const PEERNAME = 28;
pub const TIMESTAMP_OLD = 29;
pub const PASSSEC = 34;
pub const TIMESTAMPNS_OLD = 35;
pub const MARK = 36;
pub const TIMESTAMPING_OLD = 37;
pub const RXQ_OVFL = 40;
pub const WIFI_STATUS = 41;
pub const PEEK_OFF = 42;
pub const NOFCS = 43;
pub const LOCK_FILTER = 44;
pub const SELECT_ERR_QUEUE = 45;
pub const BUSY_POLL = 46;
pub const MAX_PACING_RATE = 47;
pub const BPF_EXTENSIONS = 48;
pub const INCOMING_CPU = 49;
pub const ATTACH_BPF = 50;
pub const DETACH_BPF = DETACH_FILTER;
pub const ATTACH_REUSEPORT_CBPF = 51;
pub const ATTACH_REUSEPORT_EBPF = 52;
pub const CNX_ADVICE = 53;
pub const MEMINFO = 55;
pub const INCOMING_NAPI_ID = 56;
pub const COOKIE = 57;
pub const PEERGROUPS = 59;
pub const ZEROCOPY = 60;
pub const TXTIME = 61;
pub const BINDTOIFINDEX = 62;
pub const TIMESTAMP_NEW = 63;
pub const TIMESTAMPNS_NEW = 64;
pub const TIMESTAMPING_NEW = 65;
pub const RCVTIMEO_NEW = 66;
pub const SNDTIMEO_NEW = 67;
pub const DETACH_REUSEPORT_BPF = 68;
};
pub const SO = if (is_mips) struct {
pub const DEBUG = 1;
pub const REUSEADDR = 0x0004;
pub const KEEPALIVE = 0x0008;
pub const DONTROUTE = 0x0010;
pub const BROADCAST = 0x0020;
pub const LINGER = 0x0080;
pub const OOBINLINE = 0x0100;
pub const REUSEPORT = 0x0200;
pub const SNDBUF = 0x1001;
pub const RCVBUF = 0x1002;
pub const SNDLOWAT = 0x1003;
pub const RCVLOWAT = 0x1004;
pub const RCVTIMEO = 0x1006;
pub const SNDTIMEO = 0x1005;
pub const ERROR = 0x1007;
pub const TYPE = 0x1008;
pub const ACCEPTCONN = 0x1009;
pub const PROTOCOL = 0x1028;
pub const DOMAIN = 0x1029;
pub const NO_CHECK = 11;
pub const PRIORITY = 12;
pub const BSDCOMPAT = 14;
pub const PASSCRED = 17;
pub const PEERCRED = 18;
pub const PEERSEC = 30;
pub const SNDBUFFORCE = 31;
pub const RCVBUFFORCE = 33;
pub const SECURITY_AUTHENTICATION = 22;
pub const SECURITY_ENCRYPTION_TRANSPORT = 23;
pub const SECURITY_ENCRYPTION_NETWORK = 24;
pub const BINDTODEVICE = 25;
pub const ATTACH_FILTER = 26;
pub const DETACH_FILTER = 27;
pub const GET_FILTER = ATTACH_FILTER;
pub const PEERNAME = 28;
pub const TIMESTAMP_OLD = 29;
pub const PASSSEC = 34;
pub const TIMESTAMPNS_OLD = 35;
pub const MARK = 36;
pub const TIMESTAMPING_OLD = 37;
pub const RXQ_OVFL = 40;
pub const WIFI_STATUS = 41;
pub const PEEK_OFF = 42;
pub const NOFCS = 43;
pub const LOCK_FILTER = 44;
pub const SELECT_ERR_QUEUE = 45;
pub const BUSY_POLL = 46;
pub const MAX_PACING_RATE = 47;
pub const BPF_EXTENSIONS = 48;
pub const INCOMING_CPU = 49;
pub const ATTACH_BPF = 50;
pub const DETACH_BPF = DETACH_FILTER;
pub const ATTACH_REUSEPORT_CBPF = 51;
pub const ATTACH_REUSEPORT_EBPF = 52;
pub const CNX_ADVICE = 53;
pub const MEMINFO = 55;
pub const INCOMING_NAPI_ID = 56;
pub const COOKIE = 57;
pub const PEERGROUPS = 59;
pub const ZEROCOPY = 60;
pub const TXTIME = 61;
pub const BINDTOIFINDEX = 62;
pub const TIMESTAMP_NEW = 63;
pub const TIMESTAMPNS_NEW = 64;
pub const TIMESTAMPING_NEW = 65;
pub const RCVTIMEO_NEW = 66;
pub const SNDTIMEO_NEW = 67;
pub const DETACH_REUSEPORT_BPF = 68;
} else if (is_ppc or is_ppc64) struct {
pub const DEBUG = 1;
pub const REUSEADDR = 2;
pub const TYPE = 3;
pub const ERROR = 4;
pub const DONTROUTE = 5;
pub const BROADCAST = 6;
pub const SNDBUF = 7;
pub const RCVBUF = 8;
pub const KEEPALIVE = 9;
pub const OOBINLINE = 10;
pub const NO_CHECK = 11;
pub const PRIORITY = 12;
pub const LINGER = 13;
pub const BSDCOMPAT = 14;
pub const REUSEPORT = 15;
pub const RCVLOWAT = 16;
pub const SNDLOWAT = 17;
pub const RCVTIMEO = 18;
pub const SNDTIMEO = 19;
pub const PASSCRED = 20;
pub const PEERCRED = 21;
pub const ACCEPTCONN = 30;
pub const PEERSEC = 31;
pub const SNDBUFFORCE = 32;
pub const RCVBUFFORCE = 33;
pub const PROTOCOL = 38;
pub const DOMAIN = 39;
pub const SECURITY_AUTHENTICATION = 22;
pub const SECURITY_ENCRYPTION_TRANSPORT = 23;
pub const SECURITY_ENCRYPTION_NETWORK = 24;
pub const BINDTODEVICE = 25;
pub const ATTACH_FILTER = 26;
pub const DETACH_FILTER = 27;
pub const GET_FILTER = ATTACH_FILTER;
pub const PEERNAME = 28;
pub const TIMESTAMP_OLD = 29;
pub const PASSSEC = 34;
pub const TIMESTAMPNS_OLD = 35;
pub const MARK = 36;
pub const TIMESTAMPING_OLD = 37;
pub const RXQ_OVFL = 40;
pub const WIFI_STATUS = 41;
pub const PEEK_OFF = 42;
pub const NOFCS = 43;
pub const LOCK_FILTER = 44;
pub const SELECT_ERR_QUEUE = 45;
pub const BUSY_POLL = 46;
pub const MAX_PACING_RATE = 47;
pub const BPF_EXTENSIONS = 48;
pub const INCOMING_CPU = 49;
pub const ATTACH_BPF = 50;
pub const DETACH_BPF = DETACH_FILTER;
pub const ATTACH_REUSEPORT_CBPF = 51;
pub const ATTACH_REUSEPORT_EBPF = 52;
pub const CNX_ADVICE = 53;
pub const MEMINFO = 55;
pub const INCOMING_NAPI_ID = 56;
pub const COOKIE = 57;
pub const PEERGROUPS = 59;
pub const ZEROCOPY = 60;
pub const TXTIME = 61;
pub const BINDTOIFINDEX = 62;
pub const TIMESTAMP_NEW = 63;
pub const TIMESTAMPNS_NEW = 64;
pub const TIMESTAMPING_NEW = 65;
pub const RCVTIMEO_NEW = 66;
pub const SNDTIMEO_NEW = 67;
pub const DETACH_REUSEPORT_BPF = 68;
} else if (is_sparc) struct {
pub const DEBUG = 1;
pub const REUSEADDR = 4;
pub const TYPE = 4104;
pub const ERROR = 4103;
pub const DONTROUTE = 16;
pub const BROADCAST = 32;
pub const SNDBUF = 4097;
pub const RCVBUF = 4098;
pub const KEEPALIVE = 8;
pub const OOBINLINE = 256;
pub const NO_CHECK = 11;
pub const PRIORITY = 12;
pub const LINGER = 128;
pub const BSDCOMPAT = 1024;
pub const REUSEPORT = 512;
pub const PASSCRED = 2;
pub const PEERCRED = 64;
pub const RCVLOWAT = 2048;
pub const SNDLOWAT = 4096;
pub const RCVTIMEO = 8192;
pub const SNDTIMEO = 16384;
pub const ACCEPTCONN = 32768;
pub const PEERSEC = 30;
pub const SNDBUFFORCE = 4106;
pub const RCVBUFFORCE = 4107;
pub const PROTOCOL = 4136;
pub const DOMAIN = 4137;
pub const SECURITY_AUTHENTICATION = 20481;
pub const SECURITY_ENCRYPTION_TRANSPORT = 20482;
pub const SECURITY_ENCRYPTION_NETWORK = 20484;
pub const BINDTODEVICE = 13;
pub const ATTACH_FILTER = 26;
pub const DETACH_FILTER = 27;
pub const GET_FILTER = 26;
pub const PEERNAME = 28;
pub const TIMESTAMP_OLD = 29;
pub const PASSSEC = 31;
pub const TIMESTAMPNS_OLD = 33;
pub const MARK = 34;
pub const TIMESTAMPING_OLD = 35;
pub const RXQ_OVFL = 36;
pub const WIFI_STATUS = 37;
pub const PEEK_OFF = 38;
pub const NOFCS = 39;
pub const LOCK_FILTER = 40;
pub const SELECT_ERR_QUEUE = 41;
pub const BUSY_POLL = 48;
pub const MAX_PACING_RATE = 49;
pub const BPF_EXTENSIONS = 50;
pub const INCOMING_CPU = 51;
pub const ATTACH_BPF = 52;
pub const DETACH_BPF = 27;
pub const ATTACH_REUSEPORT_CBPF = 53;
pub const ATTACH_REUSEPORT_EBPF = 54;
pub const CNX_ADVICE = 55;
pub const MEMINFO = 57;
pub const INCOMING_NAPI_ID = 58;
pub const COOKIE = 59;
pub const PEERGROUPS = 61;
pub const ZEROCOPY = 62;
pub const TXTIME = 63;
pub const BINDTOIFINDEX = 65;
pub const TIMESTAMP_NEW = 70;
pub const TIMESTAMPNS_NEW = 66;
pub const TIMESTAMPING_NEW = 67;
pub const RCVTIMEO_NEW = 68;
pub const SNDTIMEO_NEW = 69;
pub const DETACH_REUSEPORT_BPF = 71;
} else struct {
pub const DEBUG = 1;
pub const REUSEADDR = 2;
pub const TYPE = 3;
pub const ERROR = 4;
pub const DONTROUTE = 5;
pub const BROADCAST = 6;
pub const SNDBUF = 7;
pub const RCVBUF = 8;
pub const KEEPALIVE = 9;
pub const OOBINLINE = 10;
pub const NO_CHECK = 11;
pub const PRIORITY = 12;
pub const LINGER = 13;
pub const BSDCOMPAT = 14;
pub const REUSEPORT = 15;
pub const PASSCRED = 16;
pub const PEERCRED = 17;
pub const RCVLOWAT = 18;
pub const SNDLOWAT = 19;
pub const RCVTIMEO = 20;
pub const SNDTIMEO = 21;
pub const ACCEPTCONN = 30;
pub const PEERSEC = 31;
pub const SNDBUFFORCE = 32;
pub const RCVBUFFORCE = 33;
pub const PROTOCOL = 38;
pub const DOMAIN = 39;
pub const SECURITY_AUTHENTICATION = 22;
pub const SECURITY_ENCRYPTION_TRANSPORT = 23;
pub const SECURITY_ENCRYPTION_NETWORK = 24;
pub const BINDTODEVICE = 25;
pub const ATTACH_FILTER = 26;
pub const DETACH_FILTER = 27;
pub const GET_FILTER = ATTACH_FILTER;
pub const PEERNAME = 28;
pub const TIMESTAMP_OLD = 29;
pub const PASSSEC = 34;
pub const TIMESTAMPNS_OLD = 35;
pub const MARK = 36;
pub const TIMESTAMPING_OLD = 37;
pub const RXQ_OVFL = 40;
pub const WIFI_STATUS = 41;
pub const PEEK_OFF = 42;
pub const NOFCS = 43;
pub const LOCK_FILTER = 44;
pub const SELECT_ERR_QUEUE = 45;
pub const BUSY_POLL = 46;
pub const MAX_PACING_RATE = 47;
pub const BPF_EXTENSIONS = 48;
pub const INCOMING_CPU = 49;
pub const ATTACH_BPF = 50;
pub const DETACH_BPF = DETACH_FILTER;
pub const ATTACH_REUSEPORT_CBPF = 51;
pub const ATTACH_REUSEPORT_EBPF = 52;
pub const CNX_ADVICE = 53;
pub const MEMINFO = 55;
pub const INCOMING_NAPI_ID = 56;
pub const COOKIE = 57;
pub const PEERGROUPS = 59;
pub const ZEROCOPY = 60;
pub const TXTIME = 61;
pub const BINDTOIFINDEX = 62;
pub const TIMESTAMP_NEW = 63;
pub const TIMESTAMPNS_NEW = 64;
pub const TIMESTAMPING_NEW = 65;
pub const RCVTIMEO_NEW = 66;
pub const SNDTIMEO_NEW = 67;
pub const DETACH_REUSEPORT_BPF = 68;
};
 
pub const SCM = struct {
@@ -4189,22 +4186,9 @@ pub const IORING_SETUP_SINGLE_ISSUER = 1 << 12;
pub const IORING_SETUP_DEFER_TASKRUN = 1 << 13;
 
/// IO submission data structure (Submission Queue Entry)
pub const io_uring_sqe = extern struct {
opcode: IORING_OP,
flags: u8,
ioprio: u16,
fd: i32,
off: u64,
addr: u64,
len: u32,
rw_flags: u32,
user_data: u64,
buf_index: u16,
personality: u16,
splice_fd_in: i32,
addr3: u64,
resv: u64,
};
pub const io_uring_sqe = @import("linux/io_uring_sqe.zig").io_uring_sqe;
 
pub const IoUring = @import("linux/IoUring.zig");
 
/// If sqe->file_index is set to this for opcodes that instantiate a new
/// direct descriptor (like openat/openat2/accept), then io_uring will allocate
 
lib/std/os/linux/io_uring.zig added: 2966, removed: 3062, total 0
@@ -1,3 +1,4 @@
const IoUring = @This();
const std = @import("../../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
@@ -8,1336 +9,1334 @@ const posix = std.posix;
const linux = os.linux;
const testing = std.testing;
 
pub const IO_Uring = struct {
fd: os.fd_t = -1,
sq: SubmissionQueue,
cq: CompletionQueue,
flags: u32,
features: u32,
fd: os.fd_t = -1,
sq: SubmissionQueue,
cq: CompletionQueue,
flags: u32,
features: u32,
 
/// A friendly way to setup an io_uring, with default linux.io_uring_params.
/// `entries` must be a power of two between 1 and 32768, although the kernel will make the final
/// call on how many entries the submission and completion queues will ultimately have,
/// see https://github.com/torvalds/linux/blob/v5.8/fs/io_uring.c#L8027-L8050.
/// Matches the interface of io_uring_queue_init() in liburing.
pub fn init(entries: u16, flags: u32) !IO_Uring {
var params = mem.zeroInit(linux.io_uring_params, .{
.flags = flags,
.sq_thread_idle = 1000,
});
return try IO_Uring.init_params(entries, &params);
/// A friendly way to setup an io_uring, with default linux.io_uring_params.
/// `entries` must be a power of two between 1 and 32768, although the kernel will make the final
/// call on how many entries the submission and completion queues will ultimately have,
/// see https://github.com/torvalds/linux/blob/v5.8/fs/io_uring.c#L8027-L8050.
/// Matches the interface of io_uring_queue_init() in liburing.
pub fn init(entries: u16, flags: u32) !IoUring {
var params = mem.zeroInit(linux.io_uring_params, .{
.flags = flags,
.sq_thread_idle = 1000,
});
return try IoUring.init_params(entries, &params);
}
 
/// A powerful way to setup an io_uring, if you want to tweak linux.io_uring_params such as submission
/// queue thread cpu affinity or thread idle timeout (the kernel and our default is 1 second).
/// `params` is passed by reference because the kernel needs to modify the parameters.
/// Matches the interface of io_uring_queue_init_params() in liburing.
pub fn init_params(entries: u16, p: *linux.io_uring_params) !IoUring {
if (entries == 0) return error.EntriesZero;
if (!std.math.isPowerOfTwo(entries)) return error.EntriesNotPowerOfTwo;
 
assert(p.sq_entries == 0);
assert(p.cq_entries == 0 or p.flags & linux.IORING_SETUP_CQSIZE != 0);
assert(p.features == 0);
assert(p.wq_fd == 0 or p.flags & linux.IORING_SETUP_ATTACH_WQ != 0);
assert(p.resv[0] == 0);
assert(p.resv[1] == 0);
assert(p.resv[2] == 0);
 
const res = linux.io_uring_setup(entries, p);
switch (linux.getErrno(res)) {
.SUCCESS => {},
.FAULT => return error.ParamsOutsideAccessibleAddressSpace,
// The resv array contains non-zero data, p.flags contains an unsupported flag,
// entries out of bounds, IORING_SETUP_SQ_AFF was specified without IORING_SETUP_SQPOLL,
// or IORING_SETUP_CQSIZE was specified but linux.io_uring_params.cq_entries was invalid:
.INVAL => return error.ArgumentsInvalid,
.MFILE => return error.ProcessFdQuotaExceeded,
.NFILE => return error.SystemFdQuotaExceeded,
.NOMEM => return error.SystemResources,
// IORING_SETUP_SQPOLL was specified but effective user ID lacks sufficient privileges,
// or a container seccomp policy prohibits io_uring syscalls:
.PERM => return error.PermissionDenied,
.NOSYS => return error.SystemOutdated,
else => |errno| return os.unexpectedErrno(errno),
}
const fd = @as(os.fd_t, @intCast(res));
assert(fd >= 0);
errdefer os.close(fd);
 
// Kernel versions 5.4 and up use only one mmap() for the submission and completion queues.
// This is not an optional feature for us... if the kernel does it, we have to do it.
// The thinking on this by the kernel developers was that both the submission and the
// completion queue rings have sizes just over a power of two, but the submission queue ring
// is significantly smaller with u32 slots. By bundling both in a single mmap, the kernel
// gets the submission queue ring for free.
// See https://patchwork.kernel.org/patch/11115257 for the kernel patch.
// We do not support the double mmap() done before 5.4, because we want to keep the
// init/deinit mmap paths simple and because io_uring has had many bug fixes even since 5.4.
if ((p.features & linux.IORING_FEAT_SINGLE_MMAP) == 0) {
return error.SystemOutdated;
}
 
/// A powerful way to setup an io_uring, if you want to tweak linux.io_uring_params such as submission
/// queue thread cpu affinity or thread idle timeout (the kernel and our default is 1 second).
/// `params` is passed by reference because the kernel needs to modify the parameters.
/// Matches the interface of io_uring_queue_init_params() in liburing.
pub fn init_params(entries: u16, p: *linux.io_uring_params) !IO_Uring {
if (entries == 0) return error.EntriesZero;
if (!std.math.isPowerOfTwo(entries)) return error.EntriesNotPowerOfTwo;
// Check that the kernel has actually set params and that "impossible is nothing".
assert(p.sq_entries != 0);
assert(p.cq_entries != 0);
assert(p.cq_entries >= p.sq_entries);
 
assert(p.sq_entries == 0);
assert(p.cq_entries == 0 or p.flags & linux.IORING_SETUP_CQSIZE != 0);
assert(p.features == 0);
assert(p.wq_fd == 0 or p.flags & linux.IORING_SETUP_ATTACH_WQ != 0);
assert(p.resv[0] == 0);
assert(p.resv[1] == 0);
assert(p.resv[2] == 0);
// From here on, we only need to read from params, so pass `p` by value as immutable.
// The completion queue shares the mmap with the submission queue, so pass `sq` there too.
var sq = try SubmissionQueue.init(fd, p.*);
errdefer sq.deinit();
var cq = try CompletionQueue.init(fd, p.*, sq);
errdefer cq.deinit();
 
const res = linux.io_uring_setup(entries, p);
switch (linux.getErrno(res)) {
.SUCCESS => {},
.FAULT => return error.ParamsOutsideAccessibleAddressSpace,
// The resv array contains non-zero data, p.flags contains an unsupported flag,
// entries out of bounds, IORING_SETUP_SQ_AFF was specified without IORING_SETUP_SQPOLL,
// or IORING_SETUP_CQSIZE was specified but linux.io_uring_params.cq_entries was invalid:
.INVAL => return error.ArgumentsInvalid,
.MFILE => return error.ProcessFdQuotaExceeded,
.NFILE => return error.SystemFdQuotaExceeded,
.NOMEM => return error.SystemResources,
// IORING_SETUP_SQPOLL was specified but effective user ID lacks sufficient privileges,
// or a container seccomp policy prohibits io_uring syscalls:
.PERM => return error.PermissionDenied,
.NOSYS => return error.SystemOutdated,
else => |errno| return os.unexpectedErrno(errno),
}
const fd = @as(os.fd_t, @intCast(res));
assert(fd >= 0);
errdefer os.close(fd);
// Check that our starting state is as we expect.
assert(sq.head.* == 0);
assert(sq.tail.* == 0);
assert(sq.mask == p.sq_entries - 1);
// Allow flags.* to be non-zero, since the kernel may set IORING_SQ_NEED_WAKEUP at any time.
assert(sq.dropped.* == 0);
assert(sq.array.len == p.sq_entries);
assert(sq.sqes.len == p.sq_entries);
assert(sq.sqe_head == 0);
assert(sq.sqe_tail == 0);
 
// Kernel versions 5.4 and up use only one mmap() for the submission and completion queues.
// This is not an optional feature for us... if the kernel does it, we have to do it.
// The thinking on this by the kernel developers was that both the submission and the
// completion queue rings have sizes just over a power of two, but the submission queue ring
// is significantly smaller with u32 slots. By bundling both in a single mmap, the kernel
// gets the submission queue ring for free.
// See https://patchwork.kernel.org/patch/11115257 for the kernel patch.
// We do not support the double mmap() done before 5.4, because we want to keep the
// init/deinit mmap paths simple and because io_uring has had many bug fixes even since 5.4.
if ((p.features & linux.IORING_FEAT_SINGLE_MMAP) == 0) {
return error.SystemOutdated;
}
assert(cq.head.* == 0);
assert(cq.tail.* == 0);
assert(cq.mask == p.cq_entries - 1);
assert(cq.overflow.* == 0);
assert(cq.cqes.len == p.cq_entries);
 
// Check that the kernel has actually set params and that "impossible is nothing".
assert(p.sq_entries != 0);
assert(p.cq_entries != 0);
assert(p.cq_entries >= p.sq_entries);
 
// From here on, we only need to read from params, so pass `p` by value as immutable.
// The completion queue shares the mmap with the submission queue, so pass `sq` there too.
var sq = try SubmissionQueue.init(fd, p.*);
errdefer sq.deinit();
var cq = try CompletionQueue.init(fd, p.*, sq);
errdefer cq.deinit();
 
// Check that our starting state is as we expect.
assert(sq.head.* == 0);
assert(sq.tail.* == 0);
assert(sq.mask == p.sq_entries - 1);
// Allow flags.* to be non-zero, since the kernel may set IORING_SQ_NEED_WAKEUP at any time.
assert(sq.dropped.* == 0);
assert(sq.array.len == p.sq_entries);
assert(sq.sqes.len == p.sq_entries);
assert(sq.sqe_head == 0);
assert(sq.sqe_tail == 0);
 
assert(cq.head.* == 0);
assert(cq.tail.* == 0);
assert(cq.mask == p.cq_entries - 1);
assert(cq.overflow.* == 0);
assert(cq.cqes.len == p.cq_entries);
 
return IO_Uring{
.fd = fd,
.sq = sq,
.cq = cq,
.flags = p.flags,
.features = p.features,
};
}
 
pub fn deinit(self: *IO_Uring) void {
assert(self.fd >= 0);
// The mmaps depend on the fd, so the order of these calls is important:
self.cq.deinit();
self.sq.deinit();
os.close(self.fd);
self.fd = -1;
}
 
/// Returns a pointer to a vacant SQE, or an error if the submission queue is full.
/// We follow the implementation (and atomics) of liburing's `io_uring_get_sqe()` exactly.
/// However, instead of a null we return an error to force safe handling.
/// Any situation where the submission queue is full tends more towards a control flow error,
/// and the null return in liburing is more a C idiom than anything else, for lack of a better
/// alternative. In Zig, we have first-class error handling... so let's use it.
/// Matches the implementation of io_uring_get_sqe() in liburing.
pub fn get_sqe(self: *IO_Uring) !*linux.io_uring_sqe {
const head = @atomicLoad(u32, self.sq.head, .Acquire);
// Remember that these head and tail offsets wrap around every four billion operations.
// We must therefore use wrapping addition and subtraction to avoid a runtime crash.
const next = self.sq.sqe_tail +% 1;
if (next -% head > self.sq.sqes.len) return error.SubmissionQueueFull;
const sqe = &self.sq.sqes[self.sq.sqe_tail & self.sq.mask];
self.sq.sqe_tail = next;
return sqe;
}
 
/// Submits the SQEs acquired via get_sqe() to the kernel. You can call this once after you have
/// called get_sqe() multiple times to setup multiple I/O requests.
/// Returns the number of SQEs submitted, if not used alongside IORING_SETUP_SQPOLL.
/// If the io_uring instance is uses IORING_SETUP_SQPOLL, the value returned on success is not
/// guaranteed to match the amount of actually submitted sqes during this call. A value higher
/// or lower, including 0, may be returned.
/// Matches the implementation of io_uring_submit() in liburing.
pub fn submit(self: *IO_Uring) !u32 {
return self.submit_and_wait(0);
}
 
/// Like submit(), but allows waiting for events as well.
/// Returns the number of SQEs submitted.
/// Matches the implementation of io_uring_submit_and_wait() in liburing.
pub fn submit_and_wait(self: *IO_Uring, wait_nr: u32) !u32 {
const submitted = self.flush_sq();
var flags: u32 = 0;
if (self.sq_ring_needs_enter(&flags) or wait_nr > 0) {
if (wait_nr > 0 or (self.flags & linux.IORING_SETUP_IOPOLL) != 0) {
flags |= linux.IORING_ENTER_GETEVENTS;
}
return try self.enter(submitted, wait_nr, flags);
}
return submitted;
}
 
/// Tell the kernel we have submitted SQEs and/or want to wait for CQEs.
/// Returns the number of SQEs submitted.
pub fn enter(self: *IO_Uring, to_submit: u32, min_complete: u32, flags: u32) !u32 {
assert(self.fd >= 0);
const res = linux.io_uring_enter(self.fd, to_submit, min_complete, flags, null);
switch (linux.getErrno(res)) {
.SUCCESS => {},
// The kernel was unable to allocate memory or ran out of resources for the request.
// The application should wait for some completions and try again:
.AGAIN => return error.SystemResources,
// The SQE `fd` is invalid, or IOSQE_FIXED_FILE was set but no files were registered:
.BADF => return error.FileDescriptorInvalid,
// The file descriptor is valid, but the ring is not in the right state.
// See io_uring_register(2) for how to enable the ring.
.BADFD => return error.FileDescriptorInBadState,
// The application attempted to overcommit the number of requests it can have pending.
// The application should wait for some completions and try again:
.BUSY => return error.CompletionQueueOvercommitted,
// The SQE is invalid, or valid but the ring was setup with IORING_SETUP_IOPOLL:
.INVAL => return error.SubmissionQueueEntryInvalid,
// The buffer is outside the process' accessible address space, or IORING_OP_READ_FIXED
// or IORING_OP_WRITE_FIXED was specified but no buffers were registered, or the range
// described by `addr` and `len` is not within the buffer registered at `buf_index`:
.FAULT => return error.BufferInvalid,
.NXIO => return error.RingShuttingDown,
// The kernel believes our `self.fd` does not refer to an io_uring instance,
// or the opcode is valid but not supported by this kernel (more likely):
.OPNOTSUPP => return error.OpcodeNotSupported,
// The operation was interrupted by a delivery of a signal before it could complete.
// This can happen while waiting for events with IORING_ENTER_GETEVENTS:
.INTR => return error.SignalInterrupt,
else => |errno| return os.unexpectedErrno(errno),
}
return @as(u32, @intCast(res));
}
 
/// Sync internal state with kernel ring state on the SQ side.
/// Returns the number of all pending events in the SQ ring, for the shared ring.
/// This return value includes previously flushed SQEs, as per liburing.
/// The rationale is to suggest that an io_uring_enter() call is needed rather than not.
/// Matches the implementation of __io_uring_flush_sq() in liburing.
pub fn flush_sq(self: *IO_Uring) u32 {
if (self.sq.sqe_head != self.sq.sqe_tail) {
// Fill in SQEs that we have queued up, adding them to the kernel ring.
const to_submit = self.sq.sqe_tail -% self.sq.sqe_head;
var tail = self.sq.tail.*;
var i: usize = 0;
while (i < to_submit) : (i += 1) {
self.sq.array[tail & self.sq.mask] = self.sq.sqe_head & self.sq.mask;
tail +%= 1;
self.sq.sqe_head +%= 1;
}
// Ensure that the kernel can actually see the SQE updates when it sees the tail update.
@atomicStore(u32, self.sq.tail, tail, .Release);
}
return self.sq_ready();
}
 
/// Returns true if we are not using an SQ thread (thus nobody submits but us),
/// or if IORING_SQ_NEED_WAKEUP is set and the SQ thread must be explicitly awakened.
/// For the latter case, we set the SQ thread wakeup flag.
/// Matches the implementation of sq_ring_needs_enter() in liburing.
pub fn sq_ring_needs_enter(self: *IO_Uring, flags: *u32) bool {
assert(flags.* == 0);
if ((self.flags & linux.IORING_SETUP_SQPOLL) == 0) return true;
if ((@atomicLoad(u32, self.sq.flags, .Unordered) & linux.IORING_SQ_NEED_WAKEUP) != 0) {
flags.* |= linux.IORING_ENTER_SQ_WAKEUP;
return true;
}
return false;
}
 
/// Returns the number of flushed and unflushed SQEs pending in the submission queue.
/// In other words, this is the number of SQEs in the submission queue, i.e. its length.
/// These are SQEs that the kernel is yet to consume.
/// Matches the implementation of io_uring_sq_ready in liburing.
pub fn sq_ready(self: *IO_Uring) u32 {
// Always use the shared ring state (i.e. head and not sqe_head) to avoid going out of sync,
// see https://github.com/axboe/liburing/issues/92.
return self.sq.sqe_tail -% @atomicLoad(u32, self.sq.head, .Acquire);
}
 
/// Returns the number of CQEs in the completion queue, i.e. its length.
/// These are CQEs that the application is yet to consume.
/// Matches the implementation of io_uring_cq_ready in liburing.
pub fn cq_ready(self: *IO_Uring) u32 {
return @atomicLoad(u32, self.cq.tail, .Acquire) -% self.cq.head.*;
}
 
/// Copies as many CQEs as are ready, and that can fit into the destination `cqes` slice.
/// If none are available, enters into the kernel to wait for at most `wait_nr` CQEs.
/// Returns the number of CQEs copied, advancing the CQ ring.
/// Provides all the wait/peek methods found in liburing, but with batching and a single method.
/// The rationale for copying CQEs rather than copying pointers is that pointers are 8 bytes
/// whereas CQEs are not much more at only 16 bytes, and this provides a safer faster interface.
/// Safer, because you no longer need to call cqe_seen(), avoiding idempotency bugs.
/// Faster, because we can now amortize the atomic store release to `cq.head` across the batch.
/// See https://github.com/axboe/liburing/issues/103#issuecomment-686665007.
/// Matches the implementation of io_uring_peek_batch_cqe() in liburing, but supports waiting.
pub fn copy_cqes(self: *IO_Uring, cqes: []linux.io_uring_cqe, wait_nr: u32) !u32 {
const count = self.copy_cqes_ready(cqes);
if (count > 0) return count;
if (self.cq_ring_needs_flush() or wait_nr > 0) {
_ = try self.enter(0, wait_nr, linux.IORING_ENTER_GETEVENTS);
return self.copy_cqes_ready(cqes);
}
return 0;
}
 
fn copy_cqes_ready(self: *IO_Uring, cqes: []linux.io_uring_cqe) u32 {
const ready = self.cq_ready();
const count = @min(cqes.len, ready);
const head = self.cq.head.* & self.cq.mask;
const tail = (self.cq.head.* +% count) & self.cq.mask;
 
if (head <= tail) {
// head behind tail -> no wrapping
@memcpy(cqes[0..count], self.cq.cqes[head..tail]);
} else {
// head in front of tail -> buffer wraps
const two_copies_required: bool = self.cq.cqes.len - head < count;
const amount_to_copy_in_first = if (two_copies_required) self.cq.cqes.len - head else count;
@memcpy(cqes[0..amount_to_copy_in_first], self.cq.cqes[head .. head + amount_to_copy_in_first]);
if (two_copies_required) {
@memcpy(cqes[amount_to_copy_in_first..count], self.cq.cqes[0..tail]);
}
}
 
self.cq_advance(count);
return count;
}
 
/// Returns a copy of an I/O completion, waiting for it if necessary, and advancing the CQ ring.
/// A convenience method for `copy_cqes()` for when you don't need to batch or peek.
pub fn copy_cqe(ring: *IO_Uring) !linux.io_uring_cqe {
var cqes: [1]linux.io_uring_cqe = undefined;
while (true) {
const count = try ring.copy_cqes(&cqes, 1);
if (count > 0) return cqes[0];
}
}
 
/// Matches the implementation of cq_ring_needs_flush() in liburing.
pub fn cq_ring_needs_flush(self: *IO_Uring) bool {
return (@atomicLoad(u32, self.sq.flags, .Unordered) & linux.IORING_SQ_CQ_OVERFLOW) != 0;
}
 
/// For advanced use cases only that implement custom completion queue methods.
/// If you use copy_cqes() or copy_cqe() you must not call cqe_seen() or cq_advance().
/// Must be called exactly once after a zero-copy CQE has been processed by your application.
/// Not idempotent, calling more than once will result in other CQEs being lost.
/// Matches the implementation of cqe_seen() in liburing.
pub fn cqe_seen(self: *IO_Uring, cqe: *linux.io_uring_cqe) void {
_ = cqe;
self.cq_advance(1);
}
 
/// For advanced use cases only that implement custom completion queue methods.
/// Matches the implementation of cq_advance() in liburing.
pub fn cq_advance(self: *IO_Uring, count: u32) void {
if (count > 0) {
// Ensure the kernel only sees the new head value after the CQEs have been read.
@atomicStore(u32, self.cq.head, self.cq.head.* +% count, .Release);
}
}
 
/// Queues (but does not submit) an SQE to perform an `fsync(2)`.
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
/// For example, for `fdatasync()` you can set `IORING_FSYNC_DATASYNC` in the SQE's `rw_flags`.
/// N.B. While SQEs are initiated in the order in which they appear in the submission queue,
/// operations execute in parallel and completions are unordered. Therefore, an application that
/// submits a write followed by an fsync in the submission queue cannot expect the fsync to
/// apply to the write, since the fsync may complete before the write is issued to the disk.
/// You should preferably use `link_with_next_sqe()` on a write's SQE to link it with an fsync,
/// or else insert a full write barrier using `drain_previous_sqes()` when queueing an fsync.
pub fn fsync(self: *IO_Uring, user_data: u64, fd: os.fd_t, flags: u32) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_fsync(sqe, fd, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a no-op.
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
/// A no-op is more useful than may appear at first glance.
/// For example, you could call `drain_previous_sqes()` on the returned SQE, to use the no-op to
/// know when the ring is idle before acting on a kill signal.
pub fn nop(self: *IO_Uring, user_data: u64) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_nop(sqe);
sqe.user_data = user_data;
return sqe;
}
 
/// Used to select how the read should be handled.
pub const ReadBuffer = union(enum) {
/// io_uring will read directly into this buffer
buffer: []u8,
 
/// io_uring will read directly into these buffers using readv.
iovecs: []const os.iovec,
 
/// io_uring will select a buffer that has previously been provided with `provide_buffers`.
/// The buffer group reference by `group_id` must contain at least one buffer for the read to work.
/// `len` controls the number of bytes to read into the selected buffer.
buffer_selection: struct {
group_id: u16,
len: usize,
},
return IoUring{
.fd = fd,
.sq = sq,
.cq = cq,
.flags = p.flags,
.features = p.features,
};
}
 
/// Queues (but does not submit) an SQE to perform a `read(2)` or `preadv(2)` depending on the buffer type.
/// * Reading into a `ReadBuffer.buffer` uses `read(2)`
/// * Reading into a `ReadBuffer.iovecs` uses `preadv(2)`
/// If you want to do a `preadv2(2)` then set `rw_flags` on the returned SQE. See https://man7.org/linux/man-pages/man2/preadv2.2.html
///
/// Returns a pointer to the SQE.
pub fn read(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
buffer: ReadBuffer,
offset: u64,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
switch (buffer) {
.buffer => |slice| io_uring_prep_read(sqe, fd, slice, offset),
.iovecs => |vecs| io_uring_prep_readv(sqe, fd, vecs, offset),
.buffer_selection => |selection| {
io_uring_prep_rw(.READ, sqe, fd, 0, selection.len, offset);
sqe.flags |= linux.IOSQE_BUFFER_SELECT;
sqe.buf_index = selection.group_id;
},
pub fn deinit(self: *IoUring) void {
assert(self.fd >= 0);
// The mmaps depend on the fd, so the order of these calls is important:
self.cq.deinit();
self.sq.deinit();
os.close(self.fd);
self.fd = -1;
}
 
/// Returns a pointer to a vacant SQE, or an error if the submission queue is full.
/// We follow the implementation (and atomics) of liburing's `io_uring_get_sqe()` exactly.
/// However, instead of a null we return an error to force safe handling.
/// Any situation where the submission queue is full tends more towards a control flow error,
/// and the null return in liburing is more a C idiom than anything else, for lack of a better
/// alternative. In Zig, we have first-class error handling... so let's use it.
/// Matches the implementation of io_uring_get_sqe() in liburing.
pub fn get_sqe(self: *IoUring) !*linux.io_uring_sqe {
const head = @atomicLoad(u32, self.sq.head, .Acquire);
// Remember that these head and tail offsets wrap around every four billion operations.
// We must therefore use wrapping addition and subtraction to avoid a runtime crash.
const next = self.sq.sqe_tail +% 1;
if (next -% head > self.sq.sqes.len) return error.SubmissionQueueFull;
const sqe = &self.sq.sqes[self.sq.sqe_tail & self.sq.mask];
self.sq.sqe_tail = next;
return sqe;
}
 
/// Submits the SQEs acquired via get_sqe() to the kernel. You can call this once after you have
/// called get_sqe() multiple times to setup multiple I/O requests.
/// Returns the number of SQEs submitted, if not used alongside IORING_SETUP_SQPOLL.
/// If the io_uring instance is uses IORING_SETUP_SQPOLL, the value returned on success is not
/// guaranteed to match the amount of actually submitted sqes during this call. A value higher
/// or lower, including 0, may be returned.
/// Matches the implementation of io_uring_submit() in liburing.
pub fn submit(self: *IoUring) !u32 {
return self.submit_and_wait(0);
}
 
/// Like submit(), but allows waiting for events as well.
/// Returns the number of SQEs submitted.
/// Matches the implementation of io_uring_submit_and_wait() in liburing.
pub fn submit_and_wait(self: *IoUring, wait_nr: u32) !u32 {
const submitted = self.flush_sq();
var flags: u32 = 0;
if (self.sq_ring_needs_enter(&flags) or wait_nr > 0) {
if (wait_nr > 0 or (self.flags & linux.IORING_SETUP_IOPOLL) != 0) {
flags |= linux.IORING_ENTER_GETEVENTS;
}
sqe.user_data = user_data;
return sqe;
return try self.enter(submitted, wait_nr, flags);
}
return submitted;
}
 
/// Queues (but does not submit) an SQE to perform a `write(2)`.
/// Returns a pointer to the SQE.
pub fn write(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
buffer: []const u8,
offset: u64,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_write(sqe, fd, buffer, offset);
sqe.user_data = user_data;
return sqe;
/// Tell the kernel we have submitted SQEs and/or want to wait for CQEs.
/// Returns the number of SQEs submitted.
pub fn enter(self: *IoUring, to_submit: u32, min_complete: u32, flags: u32) !u32 {
assert(self.fd >= 0);
const res = linux.io_uring_enter(self.fd, to_submit, min_complete, flags, null);
switch (linux.getErrno(res)) {
.SUCCESS => {},
// The kernel was unable to allocate memory or ran out of resources for the request.
// The application should wait for some completions and try again:
.AGAIN => return error.SystemResources,
// The SQE `fd` is invalid, or IOSQE_FIXED_FILE was set but no files were registered:
.BADF => return error.FileDescriptorInvalid,
// The file descriptor is valid, but the ring is not in the right state.
// See io_uring_register(2) for how to enable the ring.
.BADFD => return error.FileDescriptorInBadState,
// The application attempted to overcommit the number of requests it can have pending.
// The application should wait for some completions and try again:
.BUSY => return error.CompletionQueueOvercommitted,
// The SQE is invalid, or valid but the ring was setup with IORING_SETUP_IOPOLL:
.INVAL => return error.SubmissionQueueEntryInvalid,
// The buffer is outside the process' accessible address space, or IORING_OP_READ_FIXED
// or IORING_OP_WRITE_FIXED was specified but no buffers were registered, or the range
// described by `addr` and `len` is not within the buffer registered at `buf_index`:
.FAULT => return error.BufferInvalid,
.NXIO => return error.RingShuttingDown,
// The kernel believes our `self.fd` does not refer to an io_uring instance,
// or the opcode is valid but not supported by this kernel (more likely):
.OPNOTSUPP => return error.OpcodeNotSupported,
// The operation was interrupted by a delivery of a signal before it could complete.
// This can happen while waiting for events with IORING_ENTER_GETEVENTS:
.INTR => return error.SignalInterrupt,
else => |errno| return os.unexpectedErrno(errno),
}
return @as(u32, @intCast(res));
}
 
/// Queues (but does not submit) an SQE to perform a `splice(2)`
/// Either `fd_in` or `fd_out` must be a pipe.
/// If `fd_in` refers to a pipe, `off_in` is ignored and must be set to std.math.maxInt(u64).
/// If `fd_in` does not refer to a pipe and `off_in` is maxInt(u64), then `len` are read
/// from `fd_in` starting from the file offset, which is incremented by the number of bytes read.
/// If `fd_in` does not refer to a pipe and `off_in` is not maxInt(u64), then the starting offset of `fd_in` will be `off_in`.
/// This splice operation can be used to implement sendfile by splicing to an intermediate pipe first,
/// then splice to the final destination. In fact, the implementation of sendfile in kernel uses splice internally.
///
/// NOTE that even if fd_in or fd_out refers to a pipe, the splice operation can still fail with EINVAL if one of the
/// fd doesn't explicitly support splice peration, e.g. reading from terminal is unsupported from kernel 5.7 to 5.11.
/// See https://github.com/axboe/liburing/issues/291
///
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
pub fn splice(self: *IO_Uring, user_data: u64, fd_in: os.fd_t, off_in: u64, fd_out: os.fd_t, off_out: u64, len: usize) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_splice(sqe, fd_in, off_in, fd_out, off_out, len);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a IORING_OP_READ_FIXED.
/// The `buffer` provided must be registered with the kernel by calling `register_buffers` first.
/// The `buffer_index` must be the same as its index in the array provided to `register_buffers`.
///
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
pub fn read_fixed(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
buffer: *os.iovec,
offset: u64,
buffer_index: u16,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_read_fixed(sqe, fd, buffer, offset, buffer_index);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `pwritev()`.
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
/// For example, if you want to do a `pwritev2()` then set `rw_flags` on the returned SQE.
/// See https://linux.die.net/man/2/pwritev.
pub fn writev(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
iovecs: []const os.iovec_const,
offset: u64,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_writev(sqe, fd, iovecs, offset);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a IORING_OP_WRITE_FIXED.
/// The `buffer` provided must be registered with the kernel by calling `register_buffers` first.
/// The `buffer_index` must be the same as its index in the array provided to `register_buffers`.
///
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
pub fn write_fixed(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
buffer: *os.iovec,
offset: u64,
buffer_index: u16,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_write_fixed(sqe, fd, buffer, offset, buffer_index);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform an `accept4(2)` on a socket.
/// Returns a pointer to the SQE.
/// Available since 5.5
pub fn accept(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_accept(sqe, fd, addr, addrlen, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues an multishot accept on a socket.
///
/// Multishot variant allows an application to issue a single accept request,
/// which will repeatedly trigger a CQE when a connection request comes in.
/// While IORING_CQE_F_MORE flag is set in CQE flags accept will generate
/// further CQEs.
///
/// Available since 5.19
pub fn accept_multishot(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_multishot_accept(sqe, fd, addr, addrlen, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues an accept using direct (registered) file descriptors.
///
/// To use an accept direct variant, the application must first have registered
/// a file table (with register_files). An unused table index will be
/// dynamically chosen and returned in the CQE res field.
///
/// After creation, they can be used by setting IOSQE_FIXED_FILE in the SQE
/// flags member, and setting the SQE fd field to the direct descriptor value
/// rather than the regular file descriptor.
///
/// Available since 5.19
pub fn accept_direct(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_accept_direct(sqe, fd, addr, addrlen, flags, linux.IORING_FILE_INDEX_ALLOC);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues an multishot accept using direct (registered) file descriptors.
/// Available since 5.19
pub fn accept_multishot_direct(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_multishot_accept_direct(sqe, fd, addr, addrlen, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queue (but does not submit) an SQE to perform a `connect(2)` on a socket.
/// Returns a pointer to the SQE.
pub fn connect(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
addr: *const os.sockaddr,
addrlen: os.socklen_t,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_connect(sqe, fd, addr, addrlen);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `epoll_ctl(2)`.
/// Returns a pointer to the SQE.
pub fn epoll_ctl(
self: *IO_Uring,
user_data: u64,
epfd: os.fd_t,
fd: os.fd_t,
op: u32,
ev: ?*linux.epoll_event,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_epoll_ctl(sqe, epfd, fd, op, ev);
sqe.user_data = user_data;
return sqe;
}
 
/// Used to select how the recv call should be handled.
pub const RecvBuffer = union(enum) {
/// io_uring will recv directly into this buffer
buffer: []u8,
 
/// io_uring will select a buffer that has previously been provided with `provide_buffers`.
/// The buffer group referenced by `group_id` must contain at least one buffer for the recv call to work.
/// `len` controls the number of bytes to read into the selected buffer.
buffer_selection: struct {
group_id: u16,
len: usize,
},
};
 
/// Queues (but does not submit) an SQE to perform a `recv(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.6
pub fn recv(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
buffer: RecvBuffer,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
switch (buffer) {
.buffer => |slice| io_uring_prep_recv(sqe, fd, slice, flags),
.buffer_selection => |selection| {
io_uring_prep_rw(.RECV, sqe, fd, 0, selection.len, 0);
sqe.rw_flags = flags;
sqe.flags |= linux.IOSQE_BUFFER_SELECT;
sqe.buf_index = selection.group_id;
},
/// Sync internal state with kernel ring state on the SQ side.
/// Returns the number of all pending events in the SQ ring, for the shared ring.
/// This return value includes previously flushed SQEs, as per liburing.
/// The rationale is to suggest that an io_uring_enter() call is needed rather than not.
/// Matches the implementation of __io_uring_flush_sq() in liburing.
pub fn flush_sq(self: *IoUring) u32 {
if (self.sq.sqe_head != self.sq.sqe_tail) {
// Fill in SQEs that we have queued up, adding them to the kernel ring.
const to_submit = self.sq.sqe_tail -% self.sq.sqe_head;
var tail = self.sq.tail.*;
var i: usize = 0;
while (i < to_submit) : (i += 1) {
self.sq.array[tail & self.sq.mask] = self.sq.sqe_head & self.sq.mask;
tail +%= 1;
self.sq.sqe_head +%= 1;
}
sqe.user_data = user_data;
return sqe;
// Ensure that the kernel can actually see the SQE updates when it sees the tail update.
@atomicStore(u32, self.sq.tail, tail, .Release);
}
return self.sq_ready();
}
 
/// Queues (but does not submit) an SQE to perform a `send(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.6
pub fn send(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
buffer: []const u8,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_send(sqe, fd, buffer, flags);
sqe.user_data = user_data;
return sqe;
/// Returns true if we are not using an SQ thread (thus nobody submits but us),
/// or if IORING_SQ_NEED_WAKEUP is set and the SQ thread must be explicitly awakened.
/// For the latter case, we set the SQ thread wakeup flag.
/// Matches the implementation of sq_ring_needs_enter() in liburing.
pub fn sq_ring_needs_enter(self: *IoUring, flags: *u32) bool {
assert(flags.* == 0);
if ((self.flags & linux.IORING_SETUP_SQPOLL) == 0) return true;
if ((@atomicLoad(u32, self.sq.flags, .Unordered) & linux.IORING_SQ_NEED_WAKEUP) != 0) {
flags.* |= linux.IORING_ENTER_SQ_WAKEUP;
return true;
}
return false;
}
 
/// Queues (but does not submit) an SQE to perform an async zerocopy `send(2)`.
///
/// This operation will most likely produce two CQEs. The flags field of the
/// first cqe may likely contain IORING_CQE_F_MORE, which means that there will
/// be a second cqe with the user_data field set to the same value. The user
/// must not modify the data buffer until the notification is posted. The first
/// cqe follows the usual rules and so its res field will contain the number of
/// bytes sent or a negative error code. The notification's res field will be
/// set to zero and the flags field will contain IORING_CQE_F_NOTIF. The two
/// step model is needed because the kernel may hold on to buffers for a long
/// time, e.g. waiting for a TCP ACK. Notifications responsible for controlling
/// the lifetime of the buffers. Even errored requests may generate a
/// notification.
///
/// Available since 6.0
pub fn send_zc(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
buffer: []const u8,
send_flags: u32,
zc_flags: u16,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_send_zc(sqe, fd, buffer, send_flags, zc_flags);
sqe.user_data = user_data;
return sqe;
/// Returns the number of flushed and unflushed SQEs pending in the submission queue.
/// In other words, this is the number of SQEs in the submission queue, i.e. its length.
/// These are SQEs that the kernel is yet to consume.
/// Matches the implementation of io_uring_sq_ready in liburing.
pub fn sq_ready(self: *IoUring) u32 {
// Always use the shared ring state (i.e. head and not sqe_head) to avoid going out of sync,
// see https://github.com/axboe/liburing/issues/92.
return self.sq.sqe_tail -% @atomicLoad(u32, self.sq.head, .Acquire);
}
 
/// Returns the number of CQEs in the completion queue, i.e. its length.
/// These are CQEs that the application is yet to consume.
/// Matches the implementation of io_uring_cq_ready in liburing.
pub fn cq_ready(self: *IoUring) u32 {
return @atomicLoad(u32, self.cq.tail, .Acquire) -% self.cq.head.*;
}
 
/// Copies as many CQEs as are ready, and that can fit into the destination `cqes` slice.
/// If none are available, enters into the kernel to wait for at most `wait_nr` CQEs.
/// Returns the number of CQEs copied, advancing the CQ ring.
/// Provides all the wait/peek methods found in liburing, but with batching and a single method.
/// The rationale for copying CQEs rather than copying pointers is that pointers are 8 bytes
/// whereas CQEs are not much more at only 16 bytes, and this provides a safer faster interface.
/// Safer, because you no longer need to call cqe_seen(), avoiding idempotency bugs.
/// Faster, because we can now amortize the atomic store release to `cq.head` across the batch.
/// See https://github.com/axboe/liburing/issues/103#issuecomment-686665007.
/// Matches the implementation of io_uring_peek_batch_cqe() in liburing, but supports waiting.
pub fn copy_cqes(self: *IoUring, cqes: []linux.io_uring_cqe, wait_nr: u32) !u32 {
const count = self.copy_cqes_ready(cqes);
if (count > 0) return count;
if (self.cq_ring_needs_flush() or wait_nr > 0) {
_ = try self.enter(0, wait_nr, linux.IORING_ENTER_GETEVENTS);
return self.copy_cqes_ready(cqes);
}
return 0;
}
 
/// Queues (but does not submit) an SQE to perform an async zerocopy `send(2)`.
/// Returns a pointer to the SQE.
/// Available since 6.0
pub fn send_zc_fixed(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
buffer: []const u8,
send_flags: u32,
zc_flags: u16,
buf_index: u16,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_send_zc_fixed(sqe, fd, buffer, send_flags, zc_flags, buf_index);
sqe.user_data = user_data;
return sqe;
}
fn copy_cqes_ready(self: *IoUring, cqes: []linux.io_uring_cqe) u32 {
const ready = self.cq_ready();
const count = @min(cqes.len, ready);
const head = self.cq.head.* & self.cq.mask;
const tail = (self.cq.head.* +% count) & self.cq.mask;
 
/// Queues (but does not submit) an SQE to perform a `recvmsg(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.3
pub fn recvmsg(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
msg: *os.msghdr,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_recvmsg(sqe, fd, msg, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `sendmsg(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.3
pub fn sendmsg(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
msg: *const os.msghdr_const,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_sendmsg(sqe, fd, msg, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform an async zerocopy `sendmsg(2)`.
/// Returns a pointer to the SQE.
/// Available since 6.1
pub fn sendmsg_zc(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
msg: *const os.msghdr_const,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_sendmsg_zc(sqe, fd, msg, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform an `openat(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.6.
pub fn openat(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
path: [*:0]const u8,
flags: linux.O,
mode: os.mode_t,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_openat(sqe, fd, path, flags, mode);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues an openat using direct (registered) file descriptors.
///
/// To use an accept direct variant, the application must first have registered
/// a file table (with register_files). An unused table index will be
/// dynamically chosen and returned in the CQE res field.
///
/// After creation, they can be used by setting IOSQE_FIXED_FILE in the SQE
/// flags member, and setting the SQE fd field to the direct descriptor value
/// rather than the regular file descriptor.
///
/// Available since 5.15
pub fn openat_direct(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
path: [*:0]const u8,
flags: linux.O,
mode: os.mode_t,
file_index: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_openat_direct(sqe, fd, path, flags, mode, file_index);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `close(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.6.
pub fn close(self: *IO_Uring, user_data: u64, fd: os.fd_t) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_close(sqe, fd);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues close of registered file descriptor.
/// Available since 5.15
pub fn close_direct(self: *IO_Uring, user_data: u64, file_index: u32) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_close_direct(sqe, file_index);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to register a timeout operation.
/// Returns a pointer to the SQE.
///
/// The timeout will complete when either the timeout expires, or after the specified number of
/// events complete (if `count` is greater than `0`).
///
/// `flags` may be `0` for a relative timeout, or `IORING_TIMEOUT_ABS` for an absolute timeout.
///
/// The completion event result will be `-ETIME` if the timeout completed through expiration,
/// `0` if the timeout completed after the specified number of events, or `-ECANCELED` if the
/// timeout was removed before it expired.
///
/// io_uring timeouts use the `CLOCK.MONOTONIC` clock source.
pub fn timeout(
self: *IO_Uring,
user_data: u64,
ts: *const os.linux.kernel_timespec,
count: u32,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_timeout(sqe, ts, count, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to remove an existing timeout operation.
/// Returns a pointer to the SQE.
///
/// The timeout is identified by its `user_data`.
///
/// The completion event result will be `0` if the timeout was found and cancelled successfully,
/// `-EBUSY` if the timeout was found but expiration was already in progress, or
/// `-ENOENT` if the timeout was not found.
pub fn timeout_remove(
self: *IO_Uring,
user_data: u64,
timeout_user_data: u64,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_timeout_remove(sqe, timeout_user_data, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to add a link timeout operation.
/// Returns a pointer to the SQE.
///
/// You need to set linux.IOSQE_IO_LINK to flags of the target operation
/// and then call this method right after the target operation.
/// See https://lwn.net/Articles/803932/ for detail.
///
/// If the dependent request finishes before the linked timeout, the timeout
/// is canceled. If the timeout finishes before the dependent request, the
/// dependent request will be canceled.
///
/// The completion event result of the link_timeout will be
/// `-ETIME` if the timeout finishes before the dependent request
/// (in this case, the completion event result of the dependent request will
/// be `-ECANCELED`), or
/// `-EALREADY` if the dependent request finishes before the linked timeout.
pub fn link_timeout(
self: *IO_Uring,
user_data: u64,
ts: *const os.linux.kernel_timespec,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_link_timeout(sqe, ts, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `poll(2)`.
/// Returns a pointer to the SQE.
pub fn poll_add(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
poll_mask: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_poll_add(sqe, fd, poll_mask);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to remove an existing poll operation.
/// Returns a pointer to the SQE.
pub fn poll_remove(
self: *IO_Uring,
user_data: u64,
target_user_data: u64,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_poll_remove(sqe, target_user_data);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to update the user data of an existing poll
/// operation. Returns a pointer to the SQE.
pub fn poll_update(
self: *IO_Uring,
user_data: u64,
old_user_data: u64,
new_user_data: u64,
poll_mask: u32,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_poll_update(sqe, old_user_data, new_user_data, poll_mask, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform an `fallocate(2)`.
/// Returns a pointer to the SQE.
pub fn fallocate(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
mode: i32,
offset: u64,
len: u64,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_fallocate(sqe, fd, mode, offset, len);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform an `statx(2)`.
/// Returns a pointer to the SQE.
pub fn statx(
self: *IO_Uring,
user_data: u64,
fd: os.fd_t,
path: [:0]const u8,
flags: u32,
mask: u32,
buf: *linux.Statx,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_statx(sqe, fd, path, flags, mask, buf);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to remove an existing operation.
/// Returns a pointer to the SQE.
///
/// The operation is identified by its `user_data`.
///
/// The completion event result will be `0` if the operation was found and cancelled successfully,
/// `-EALREADY` if the operation was found but was already in progress, or
/// `-ENOENT` if the operation was not found.
pub fn cancel(
self: *IO_Uring,
user_data: u64,
cancel_user_data: u64,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_cancel(sqe, cancel_user_data, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `shutdown(2)`.
/// Returns a pointer to the SQE.
///
/// The operation is identified by its `user_data`.
pub fn shutdown(
self: *IO_Uring,
user_data: u64,
sockfd: os.socket_t,
how: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_shutdown(sqe, sockfd, how);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `renameat2(2)`.
/// Returns a pointer to the SQE.
pub fn renameat(
self: *IO_Uring,
user_data: u64,
old_dir_fd: os.fd_t,
old_path: [*:0]const u8,
new_dir_fd: os.fd_t,
new_path: [*:0]const u8,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_renameat(sqe, old_dir_fd, old_path, new_dir_fd, new_path, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `unlinkat(2)`.
/// Returns a pointer to the SQE.
pub fn unlinkat(
self: *IO_Uring,
user_data: u64,
dir_fd: os.fd_t,
path: [*:0]const u8,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_unlinkat(sqe, dir_fd, path, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `mkdirat(2)`.
/// Returns a pointer to the SQE.
pub fn mkdirat(
self: *IO_Uring,
user_data: u64,
dir_fd: os.fd_t,
path: [*:0]const u8,
mode: os.mode_t,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_mkdirat(sqe, dir_fd, path, mode);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `symlinkat(2)`.
/// Returns a pointer to the SQE.
pub fn symlinkat(
self: *IO_Uring,
user_data: u64,
target: [*:0]const u8,
new_dir_fd: os.fd_t,
link_path: [*:0]const u8,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_symlinkat(sqe, target, new_dir_fd, link_path);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `linkat(2)`.
/// Returns a pointer to the SQE.
pub fn linkat(
self: *IO_Uring,
user_data: u64,
old_dir_fd: os.fd_t,
old_path: [*:0]const u8,
new_dir_fd: os.fd_t,
new_path: [*:0]const u8,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_linkat(sqe, old_dir_fd, old_path, new_dir_fd, new_path, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to provide a group of buffers used for commands that read/receive data.
/// Returns a pointer to the SQE.
///
/// Provided buffers can be used in `read`, `recv` or `recvmsg` commands via .buffer_selection.
///
/// The kernel expects a contiguous block of memory of size (buffers_count * buffer_size).
pub fn provide_buffers(
self: *IO_Uring,
user_data: u64,
buffers: [*]u8,
buffer_size: usize,
buffers_count: usize,
group_id: usize,
buffer_id: usize,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_provide_buffers(sqe, buffers, buffer_size, buffers_count, group_id, buffer_id);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to remove a group of provided buffers.
/// Returns a pointer to the SQE.
pub fn remove_buffers(
self: *IO_Uring,
user_data: u64,
buffers_count: usize,
group_id: usize,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_remove_buffers(sqe, buffers_count, group_id);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `waitid(2)`.
/// Returns a pointer to the SQE.
pub fn waitid(
self: *IO_Uring,
user_data: u64,
id_type: linux.P,
id: i32,
infop: *linux.siginfo_t,
options: u32,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_waitid(sqe, id_type, id, infop, options, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Registers an array of file descriptors.
/// Every time a file descriptor is put in an SQE and submitted to the kernel, the kernel must
/// retrieve a reference to the file, and once I/O has completed the file reference must be
/// dropped. The atomic nature of this file reference can be a slowdown for high IOPS workloads.
/// This slowdown can be avoided by pre-registering file descriptors.
/// To refer to a registered file descriptor, IOSQE_FIXED_FILE must be set in the SQE's flags,
/// and the SQE's fd must be set to the index of the file descriptor in the registered array.
/// Registering file descriptors will wait for the ring to idle.
/// Files are automatically unregistered by the kernel when the ring is torn down.
/// An application need unregister only if it wants to register a new array of file descriptors.
pub fn register_files(self: *IO_Uring, fds: []const os.fd_t) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.REGISTER_FILES,
@as(*const anyopaque, @ptrCast(fds.ptr)),
@as(u32, @intCast(fds.len)),
);
try handle_registration_result(res);
}
 
/// Updates registered file descriptors.
///
/// Updates are applied starting at the provided offset in the original file descriptors slice.
/// There are three kind of updates:
/// * turning a sparse entry (where the fd is -1) into a real one
/// * removing an existing entry (set the fd to -1)
/// * replacing an existing entry with a new fd
/// Adding new file descriptors must be done with `register_files`.
pub fn register_files_update(self: *IO_Uring, offset: u32, fds: []const os.fd_t) !void {
assert(self.fd >= 0);
 
const FilesUpdate = extern struct {
offset: u32,
resv: u32,
fds: u64 align(8),
};
var update = FilesUpdate{
.offset = offset,
.resv = @as(u32, 0),
.fds = @as(u64, @intFromPtr(fds.ptr)),
};
 
const res = linux.io_uring_register(
self.fd,
.REGISTER_FILES_UPDATE,
@as(*const anyopaque, @ptrCast(&update)),
@as(u32, @intCast(fds.len)),
);
try handle_registration_result(res);
}
 
/// Registers the file descriptor for an eventfd that will be notified of completion events on
/// an io_uring instance.
/// Only a single a eventfd can be registered at any given point in time.
pub fn register_eventfd(self: *IO_Uring, fd: os.fd_t) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.REGISTER_EVENTFD,
@as(*const anyopaque, @ptrCast(&fd)),
1,
);
try handle_registration_result(res);
}
 
/// Registers the file descriptor for an eventfd that will be notified of completion events on
/// an io_uring instance. Notifications are only posted for events that complete in an async manner.
/// This means that events that complete inline while being submitted do not trigger a notification event.
/// Only a single eventfd can be registered at any given point in time.
pub fn register_eventfd_async(self: *IO_Uring, fd: os.fd_t) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.REGISTER_EVENTFD_ASYNC,
@as(*const anyopaque, @ptrCast(&fd)),
1,
);
try handle_registration_result(res);
}
 
/// Unregister the registered eventfd file descriptor.
pub fn unregister_eventfd(self: *IO_Uring) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.UNREGISTER_EVENTFD,
null,
0,
);
try handle_registration_result(res);
}
 
/// Registers an array of buffers for use with `read_fixed` and `write_fixed`.
pub fn register_buffers(self: *IO_Uring, buffers: []const os.iovec) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.REGISTER_BUFFERS,
buffers.ptr,
@as(u32, @intCast(buffers.len)),
);
try handle_registration_result(res);
}
 
/// Unregister the registered buffers.
pub fn unregister_buffers(self: *IO_Uring) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(self.fd, .UNREGISTER_BUFFERS, null, 0);
switch (linux.getErrno(res)) {
.SUCCESS => {},
.NXIO => return error.BuffersNotRegistered,
else => |errno| return os.unexpectedErrno(errno),
if (head <= tail) {
// head behind tail -> no wrapping
@memcpy(cqes[0..count], self.cq.cqes[head..tail]);
} else {
// head in front of tail -> buffer wraps
const two_copies_required: bool = self.cq.cqes.len - head < count;
const amount_to_copy_in_first = if (two_copies_required) self.cq.cqes.len - head else count;
@memcpy(cqes[0..amount_to_copy_in_first], self.cq.cqes[head .. head + amount_to_copy_in_first]);
if (two_copies_required) {
@memcpy(cqes[amount_to_copy_in_first..count], self.cq.cqes[0..tail]);
}
}
 
fn handle_registration_result(res: usize) !void {
switch (linux.getErrno(res)) {
.SUCCESS => {},
// One or more fds in the array are invalid, or the kernel does not support sparse sets:
.BADF => return error.FileDescriptorInvalid,
.BUSY => return error.FilesAlreadyRegistered,
.INVAL => return error.FilesEmpty,
// Adding `nr_args` file references would exceed the maximum allowed number of files the
// user is allowed to have according to the per-user RLIMIT_NOFILE resource limit and
// the CAP_SYS_RESOURCE capability is not set, or `nr_args` exceeds the maximum allowed
// for a fixed file set (older kernels have a limit of 1024 files vs 64K files):
.MFILE => return error.UserFdQuotaExceeded,
// Insufficient kernel resources, or the caller had a non-zero RLIMIT_MEMLOCK soft
// resource limit but tried to lock more memory than the limit permitted (not enforced
// when the process is privileged with CAP_IPC_LOCK):
.NOMEM => return error.SystemResources,
// Attempt to register files on a ring already registering files or being torn down:
.NXIO => return error.RingShuttingDownOrAlreadyRegisteringFiles,
else => |errno| return os.unexpectedErrno(errno),
}
}
self.cq_advance(count);
return count;
}
 
/// Unregisters all registered file descriptors previously associated with the ring.
pub fn unregister_files(self: *IO_Uring) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(self.fd, .UNREGISTER_FILES, null, 0);
switch (linux.getErrno(res)) {
.SUCCESS => {},
.NXIO => return error.FilesNotRegistered,
else => |errno| return os.unexpectedErrno(errno),
}
/// Returns a copy of an I/O completion, waiting for it if necessary, and advancing the CQ ring.
/// A convenience method for `copy_cqes()` for when you don't need to batch or peek.
pub fn copy_cqe(ring: *IoUring) !linux.io_uring_cqe {
var cqes: [1]linux.io_uring_cqe = undefined;
while (true) {
const count = try ring.copy_cqes(&cqes, 1);
if (count > 0) return cqes[0];
}
}
 
/// Prepares a socket creation request.
/// New socket fd will be returned in completion result.
/// Available since 5.19
pub fn socket(
self: *IO_Uring,
user_data: u64,
domain: u32,
socket_type: u32,
protocol: u32,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_socket(sqe, domain, socket_type, protocol, flags);
sqe.user_data = user_data;
return sqe;
}
/// Matches the implementation of cq_ring_needs_flush() in liburing.
pub fn cq_ring_needs_flush(self: *IoUring) bool {
return (@atomicLoad(u32, self.sq.flags, .Unordered) & linux.IORING_SQ_CQ_OVERFLOW) != 0;
}
 
/// Prepares a socket creation request for registered file at index `file_index`.
/// Available since 5.19
pub fn socket_direct(
self: *IO_Uring,
user_data: u64,
domain: u32,
socket_type: u32,
protocol: u32,
flags: u32,
file_index: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_socket_direct(sqe, domain, socket_type, protocol, flags, file_index);
sqe.user_data = user_data;
return sqe;
}
/// For advanced use cases only that implement custom completion queue methods.
/// If you use copy_cqes() or copy_cqe() you must not call cqe_seen() or cq_advance().
/// Must be called exactly once after a zero-copy CQE has been processed by your application.
/// Not idempotent, calling more than once will result in other CQEs being lost.
/// Matches the implementation of cqe_seen() in liburing.
pub fn cqe_seen(self: *IoUring, cqe: *linux.io_uring_cqe) void {
_ = cqe;
self.cq_advance(1);
}
 
/// Prepares a socket creation request for registered file, index chosen by kernel (file index alloc).
/// File index will be returned in CQE res field.
/// Available since 5.19
pub fn socket_direct_alloc(
self: *IO_Uring,
user_data: u64,
domain: u32,
socket_type: u32,
protocol: u32,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
io_uring_prep_socket_direct_alloc(sqe, domain, socket_type, protocol, flags);
sqe.user_data = user_data;
return sqe;
/// For advanced use cases only that implement custom completion queue methods.
/// Matches the implementation of cq_advance() in liburing.
pub fn cq_advance(self: *IoUring, count: u32) void {
if (count > 0) {
// Ensure the kernel only sees the new head value after the CQEs have been read.
@atomicStore(u32, self.cq.head, self.cq.head.* +% count, .Release);
}
}
 
/// Queues (but does not submit) an SQE to perform an `fsync(2)`.
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
/// For example, for `fdatasync()` you can set `IORING_FSYNC_DATASYNC` in the SQE's `rw_flags`.
/// N.B. While SQEs are initiated in the order in which they appear in the submission queue,
/// operations execute in parallel and completions are unordered. Therefore, an application that
/// submits a write followed by an fsync in the submission queue cannot expect the fsync to
/// apply to the write, since the fsync may complete before the write is issued to the disk.
/// You should preferably use `link_with_next_sqe()` on a write's SQE to link it with an fsync,
/// or else insert a full write barrier using `drain_previous_sqes()` when queueing an fsync.
pub fn fsync(self: *IoUring, user_data: u64, fd: os.fd_t, flags: u32) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_fsync(fd, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a no-op.
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
/// A no-op is more useful than may appear at first glance.
/// For example, you could call `drain_previous_sqes()` on the returned SQE, to use the no-op to
/// know when the ring is idle before acting on a kill signal.
pub fn nop(self: *IoUring, user_data: u64) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_nop();
sqe.user_data = user_data;
return sqe;
}
 
/// Used to select how the read should be handled.
pub const ReadBuffer = union(enum) {
/// io_uring will read directly into this buffer
buffer: []u8,
 
/// io_uring will read directly into these buffers using readv.
iovecs: []const os.iovec,
 
/// io_uring will select a buffer that has previously been provided with `provide_buffers`.
/// The buffer group reference by `group_id` must contain at least one buffer for the read to work.
/// `len` controls the number of bytes to read into the selected buffer.
buffer_selection: struct {
group_id: u16,
len: usize,
},
};
 
/// Queues (but does not submit) an SQE to perform a `read(2)` or `preadv(2)` depending on the buffer type.
/// * Reading into a `ReadBuffer.buffer` uses `read(2)`
/// * Reading into a `ReadBuffer.iovecs` uses `preadv(2)`
/// If you want to do a `preadv2(2)` then set `rw_flags` on the returned SQE. See https://man7.org/linux/man-pages/man2/preadv2.2.html
///
/// Returns a pointer to the SQE.
pub fn read(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
buffer: ReadBuffer,
offset: u64,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
switch (buffer) {
.buffer => |slice| sqe.prep_read(fd, slice, offset),
.iovecs => |vecs| sqe.prep_readv(fd, vecs, offset),
.buffer_selection => |selection| {
sqe.prep_rw(.READ, fd, 0, selection.len, offset);
sqe.flags |= linux.IOSQE_BUFFER_SELECT;
sqe.buf_index = selection.group_id;
},
}
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `write(2)`.
/// Returns a pointer to the SQE.
pub fn write(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
buffer: []const u8,
offset: u64,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_write(fd, buffer, offset);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `splice(2)`
/// Either `fd_in` or `fd_out` must be a pipe.
/// If `fd_in` refers to a pipe, `off_in` is ignored and must be set to std.math.maxInt(u64).
/// If `fd_in` does not refer to a pipe and `off_in` is maxInt(u64), then `len` are read
/// from `fd_in` starting from the file offset, which is incremented by the number of bytes read.
/// If `fd_in` does not refer to a pipe and `off_in` is not maxInt(u64), then the starting offset of `fd_in` will be `off_in`.
/// This splice operation can be used to implement sendfile by splicing to an intermediate pipe first,
/// then splice to the final destination. In fact, the implementation of sendfile in kernel uses splice internally.
///
/// NOTE that even if fd_in or fd_out refers to a pipe, the splice operation can still fail with EINVAL if one of the
/// fd doesn't explicitly support splice peration, e.g. reading from terminal is unsupported from kernel 5.7 to 5.11.
/// See https://github.com/axboe/liburing/issues/291
///
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
pub fn splice(self: *IoUring, user_data: u64, fd_in: os.fd_t, off_in: u64, fd_out: os.fd_t, off_out: u64, len: usize) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_splice(fd_in, off_in, fd_out, off_out, len);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a IORING_OP_READ_FIXED.
/// The `buffer` provided must be registered with the kernel by calling `register_buffers` first.
/// The `buffer_index` must be the same as its index in the array provided to `register_buffers`.
///
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
pub fn read_fixed(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
buffer: *os.iovec,
offset: u64,
buffer_index: u16,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_read_fixed(fd, buffer, offset, buffer_index);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `pwritev()`.
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
/// For example, if you want to do a `pwritev2()` then set `rw_flags` on the returned SQE.
/// See https://linux.die.net/man/2/pwritev.
pub fn writev(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
iovecs: []const os.iovec_const,
offset: u64,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_writev(fd, iovecs, offset);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a IORING_OP_WRITE_FIXED.
/// The `buffer` provided must be registered with the kernel by calling `register_buffers` first.
/// The `buffer_index` must be the same as its index in the array provided to `register_buffers`.
///
/// Returns a pointer to the SQE so that you can further modify the SQE for advanced use cases.
pub fn write_fixed(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
buffer: *os.iovec,
offset: u64,
buffer_index: u16,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_write_fixed(fd, buffer, offset, buffer_index);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform an `accept4(2)` on a socket.
/// Returns a pointer to the SQE.
/// Available since 5.5
pub fn accept(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_accept(fd, addr, addrlen, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues an multishot accept on a socket.
///
/// Multishot variant allows an application to issue a single accept request,
/// which will repeatedly trigger a CQE when a connection request comes in.
/// While IORING_CQE_F_MORE flag is set in CQE flags accept will generate
/// further CQEs.
///
/// Available since 5.19
pub fn accept_multishot(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_multishot_accept(fd, addr, addrlen, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues an accept using direct (registered) file descriptors.
///
/// To use an accept direct variant, the application must first have registered
/// a file table (with register_files). An unused table index will be
/// dynamically chosen and returned in the CQE res field.
///
/// After creation, they can be used by setting IOSQE_FIXED_FILE in the SQE
/// flags member, and setting the SQE fd field to the direct descriptor value
/// rather than the regular file descriptor.
///
/// Available since 5.19
pub fn accept_direct(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_accept_direct(fd, addr, addrlen, flags, linux.IORING_FILE_INDEX_ALLOC);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues an multishot accept using direct (registered) file descriptors.
/// Available since 5.19
pub fn accept_multishot_direct(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_multishot_accept_direct(fd, addr, addrlen, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queue (but does not submit) an SQE to perform a `connect(2)` on a socket.
/// Returns a pointer to the SQE.
pub fn connect(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
addr: *const os.sockaddr,
addrlen: os.socklen_t,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_connect(fd, addr, addrlen);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `epoll_ctl(2)`.
/// Returns a pointer to the SQE.
pub fn epoll_ctl(
self: *IoUring,
user_data: u64,
epfd: os.fd_t,
fd: os.fd_t,
op: u32,
ev: ?*linux.epoll_event,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_epoll_ctl(epfd, fd, op, ev);
sqe.user_data = user_data;
return sqe;
}
 
/// Used to select how the recv call should be handled.
pub const RecvBuffer = union(enum) {
/// io_uring will recv directly into this buffer
buffer: []u8,
 
/// io_uring will select a buffer that has previously been provided with `provide_buffers`.
/// The buffer group referenced by `group_id` must contain at least one buffer for the recv call to work.
/// `len` controls the number of bytes to read into the selected buffer.
buffer_selection: struct {
group_id: u16,
len: usize,
},
};
 
/// Queues (but does not submit) an SQE to perform a `recv(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.6
pub fn recv(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
buffer: RecvBuffer,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
switch (buffer) {
.buffer => |slice| sqe.prep_recv(fd, slice, flags),
.buffer_selection => |selection| {
sqe.prep_rw(.RECV, fd, 0, selection.len, 0);
sqe.rw_flags = flags;
sqe.flags |= linux.IOSQE_BUFFER_SELECT;
sqe.buf_index = selection.group_id;
},
}
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `send(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.6
pub fn send(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
buffer: []const u8,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_send(fd, buffer, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform an async zerocopy `send(2)`.
///
/// This operation will most likely produce two CQEs. The flags field of the
/// first cqe may likely contain IORING_CQE_F_MORE, which means that there will
/// be a second cqe with the user_data field set to the same value. The user
/// must not modify the data buffer until the notification is posted. The first
/// cqe follows the usual rules and so its res field will contain the number of
/// bytes sent or a negative error code. The notification's res field will be
/// set to zero and the flags field will contain IORING_CQE_F_NOTIF. The two
/// step model is needed because the kernel may hold on to buffers for a long
/// time, e.g. waiting for a TCP ACK. Notifications responsible for controlling
/// the lifetime of the buffers. Even errored requests may generate a
/// notification.
///
/// Available since 6.0
pub fn send_zc(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
buffer: []const u8,
send_flags: u32,
zc_flags: u16,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_send_zc(fd, buffer, send_flags, zc_flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform an async zerocopy `send(2)`.
/// Returns a pointer to the SQE.
/// Available since 6.0
pub fn send_zc_fixed(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
buffer: []const u8,
send_flags: u32,
zc_flags: u16,
buf_index: u16,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_send_zc_fixed(fd, buffer, send_flags, zc_flags, buf_index);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `recvmsg(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.3
pub fn recvmsg(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
msg: *os.msghdr,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_recvmsg(fd, msg, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `sendmsg(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.3
pub fn sendmsg(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
msg: *const os.msghdr_const,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_sendmsg(fd, msg, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform an async zerocopy `sendmsg(2)`.
/// Returns a pointer to the SQE.
/// Available since 6.1
pub fn sendmsg_zc(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
msg: *const os.msghdr_const,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_sendmsg_zc(fd, msg, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform an `openat(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.6.
pub fn openat(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
path: [*:0]const u8,
flags: linux.O,
mode: os.mode_t,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_openat(fd, path, flags, mode);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues an openat using direct (registered) file descriptors.
///
/// To use an accept direct variant, the application must first have registered
/// a file table (with register_files). An unused table index will be
/// dynamically chosen and returned in the CQE res field.
///
/// After creation, they can be used by setting IOSQE_FIXED_FILE in the SQE
/// flags member, and setting the SQE fd field to the direct descriptor value
/// rather than the regular file descriptor.
///
/// Available since 5.15
pub fn openat_direct(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
path: [*:0]const u8,
flags: linux.O,
mode: os.mode_t,
file_index: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_openat_direct(fd, path, flags, mode, file_index);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `close(2)`.
/// Returns a pointer to the SQE.
/// Available since 5.6.
pub fn close(self: *IoUring, user_data: u64, fd: os.fd_t) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_close(fd);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues close of registered file descriptor.
/// Available since 5.15
pub fn close_direct(self: *IoUring, user_data: u64, file_index: u32) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_close_direct(file_index);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to register a timeout operation.
/// Returns a pointer to the SQE.
///
/// The timeout will complete when either the timeout expires, or after the specified number of
/// events complete (if `count` is greater than `0`).
///
/// `flags` may be `0` for a relative timeout, or `IORING_TIMEOUT_ABS` for an absolute timeout.
///
/// The completion event result will be `-ETIME` if the timeout completed through expiration,
/// `0` if the timeout completed after the specified number of events, or `-ECANCELED` if the
/// timeout was removed before it expired.
///
/// io_uring timeouts use the `CLOCK.MONOTONIC` clock source.
pub fn timeout(
self: *IoUring,
user_data: u64,
ts: *const os.linux.kernel_timespec,
count: u32,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_timeout(ts, count, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to remove an existing timeout operation.
/// Returns a pointer to the SQE.
///
/// The timeout is identified by its `user_data`.
///
/// The completion event result will be `0` if the timeout was found and cancelled successfully,
/// `-EBUSY` if the timeout was found but expiration was already in progress, or
/// `-ENOENT` if the timeout was not found.
pub fn timeout_remove(
self: *IoUring,
user_data: u64,
timeout_user_data: u64,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_timeout_remove(timeout_user_data, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to add a link timeout operation.
/// Returns a pointer to the SQE.
///
/// You need to set linux.IOSQE_IO_LINK to flags of the target operation
/// and then call this method right after the target operation.
/// See https://lwn.net/Articles/803932/ for detail.
///
/// If the dependent request finishes before the linked timeout, the timeout
/// is canceled. If the timeout finishes before the dependent request, the
/// dependent request will be canceled.
///
/// The completion event result of the link_timeout will be
/// `-ETIME` if the timeout finishes before the dependent request
/// (in this case, the completion event result of the dependent request will
/// be `-ECANCELED`), or
/// `-EALREADY` if the dependent request finishes before the linked timeout.
pub fn link_timeout(
self: *IoUring,
user_data: u64,
ts: *const os.linux.kernel_timespec,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_link_timeout(ts, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `poll(2)`.
/// Returns a pointer to the SQE.
pub fn poll_add(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
poll_mask: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_poll_add(fd, poll_mask);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to remove an existing poll operation.
/// Returns a pointer to the SQE.
pub fn poll_remove(
self: *IoUring,
user_data: u64,
target_user_data: u64,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_poll_remove(target_user_data);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to update the user data of an existing poll
/// operation. Returns a pointer to the SQE.
pub fn poll_update(
self: *IoUring,
user_data: u64,
old_user_data: u64,
new_user_data: u64,
poll_mask: u32,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_poll_update(old_user_data, new_user_data, poll_mask, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform an `fallocate(2)`.
/// Returns a pointer to the SQE.
pub fn fallocate(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
mode: i32,
offset: u64,
len: u64,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_fallocate(fd, mode, offset, len);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform an `statx(2)`.
/// Returns a pointer to the SQE.
pub fn statx(
self: *IoUring,
user_data: u64,
fd: os.fd_t,
path: [:0]const u8,
flags: u32,
mask: u32,
buf: *linux.Statx,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_statx(fd, path, flags, mask, buf);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to remove an existing operation.
/// Returns a pointer to the SQE.
///
/// The operation is identified by its `user_data`.
///
/// The completion event result will be `0` if the operation was found and cancelled successfully,
/// `-EALREADY` if the operation was found but was already in progress, or
/// `-ENOENT` if the operation was not found.
pub fn cancel(
self: *IoUring,
user_data: u64,
cancel_user_data: u64,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_cancel(cancel_user_data, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `shutdown(2)`.
/// Returns a pointer to the SQE.
///
/// The operation is identified by its `user_data`.
pub fn shutdown(
self: *IoUring,
user_data: u64,
sockfd: os.socket_t,
how: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_shutdown(sockfd, how);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `renameat2(2)`.
/// Returns a pointer to the SQE.
pub fn renameat(
self: *IoUring,
user_data: u64,
old_dir_fd: os.fd_t,
old_path: [*:0]const u8,
new_dir_fd: os.fd_t,
new_path: [*:0]const u8,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_renameat(old_dir_fd, old_path, new_dir_fd, new_path, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `unlinkat(2)`.
/// Returns a pointer to the SQE.
pub fn unlinkat(
self: *IoUring,
user_data: u64,
dir_fd: os.fd_t,
path: [*:0]const u8,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_unlinkat(dir_fd, path, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `mkdirat(2)`.
/// Returns a pointer to the SQE.
pub fn mkdirat(
self: *IoUring,
user_data: u64,
dir_fd: os.fd_t,
path: [*:0]const u8,
mode: os.mode_t,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_mkdirat(dir_fd, path, mode);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `symlinkat(2)`.
/// Returns a pointer to the SQE.
pub fn symlinkat(
self: *IoUring,
user_data: u64,
target: [*:0]const u8,
new_dir_fd: os.fd_t,
link_path: [*:0]const u8,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_symlinkat(target, new_dir_fd, link_path);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `linkat(2)`.
/// Returns a pointer to the SQE.
pub fn linkat(
self: *IoUring,
user_data: u64,
old_dir_fd: os.fd_t,
old_path: [*:0]const u8,
new_dir_fd: os.fd_t,
new_path: [*:0]const u8,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_linkat(old_dir_fd, old_path, new_dir_fd, new_path, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to provide a group of buffers used for commands that read/receive data.
/// Returns a pointer to the SQE.
///
/// Provided buffers can be used in `read`, `recv` or `recvmsg` commands via .buffer_selection.
///
/// The kernel expects a contiguous block of memory of size (buffers_count * buffer_size).
pub fn provide_buffers(
self: *IoUring,
user_data: u64,
buffers: [*]u8,
buffer_size: usize,
buffers_count: usize,
group_id: usize,
buffer_id: usize,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_provide_buffers(buffers, buffer_size, buffers_count, group_id, buffer_id);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to remove a group of provided buffers.
/// Returns a pointer to the SQE.
pub fn remove_buffers(
self: *IoUring,
user_data: u64,
buffers_count: usize,
group_id: usize,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_remove_buffers(buffers_count, group_id);
sqe.user_data = user_data;
return sqe;
}
 
/// Queues (but does not submit) an SQE to perform a `waitid(2)`.
/// Returns a pointer to the SQE.
pub fn waitid(
self: *IoUring,
user_data: u64,
id_type: linux.P,
id: i32,
infop: *linux.siginfo_t,
options: u32,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_waitid(id_type, id, infop, options, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Registers an array of file descriptors.
/// Every time a file descriptor is put in an SQE and submitted to the kernel, the kernel must
/// retrieve a reference to the file, and once I/O has completed the file reference must be
/// dropped. The atomic nature of this file reference can be a slowdown for high IOPS workloads.
/// This slowdown can be avoided by pre-registering file descriptors.
/// To refer to a registered file descriptor, IOSQE_FIXED_FILE must be set in the SQE's flags,
/// and the SQE's fd must be set to the index of the file descriptor in the registered array.
/// Registering file descriptors will wait for the ring to idle.
/// Files are automatically unregistered by the kernel when the ring is torn down.
/// An application need unregister only if it wants to register a new array of file descriptors.
pub fn register_files(self: *IoUring, fds: []const os.fd_t) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.REGISTER_FILES,
@as(*const anyopaque, @ptrCast(fds.ptr)),
@as(u32, @intCast(fds.len)),
);
try handle_registration_result(res);
}
 
/// Updates registered file descriptors.
///
/// Updates are applied starting at the provided offset in the original file descriptors slice.
/// There are three kind of updates:
/// * turning a sparse entry (where the fd is -1) into a real one
/// * removing an existing entry (set the fd to -1)
/// * replacing an existing entry with a new fd
/// Adding new file descriptors must be done with `register_files`.
pub fn register_files_update(self: *IoUring, offset: u32, fds: []const os.fd_t) !void {
assert(self.fd >= 0);
 
const FilesUpdate = extern struct {
offset: u32,
resv: u32,
fds: u64 align(8),
};
var update = FilesUpdate{
.offset = offset,
.resv = @as(u32, 0),
.fds = @as(u64, @intFromPtr(fds.ptr)),
};
 
const res = linux.io_uring_register(
self.fd,
.REGISTER_FILES_UPDATE,
@as(*const anyopaque, @ptrCast(&update)),
@as(u32, @intCast(fds.len)),
);
try handle_registration_result(res);
}
 
/// Registers the file descriptor for an eventfd that will be notified of completion events on
/// an io_uring instance.
/// Only a single a eventfd can be registered at any given point in time.
pub fn register_eventfd(self: *IoUring, fd: os.fd_t) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.REGISTER_EVENTFD,
@as(*const anyopaque, @ptrCast(&fd)),
1,
);
try handle_registration_result(res);
}
 
/// Registers the file descriptor for an eventfd that will be notified of completion events on
/// an io_uring instance. Notifications are only posted for events that complete in an async manner.
/// This means that events that complete inline while being submitted do not trigger a notification event.
/// Only a single eventfd can be registered at any given point in time.
pub fn register_eventfd_async(self: *IoUring, fd: os.fd_t) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.REGISTER_EVENTFD_ASYNC,
@as(*const anyopaque, @ptrCast(&fd)),
1,
);
try handle_registration_result(res);
}
 
/// Unregister the registered eventfd file descriptor.
pub fn unregister_eventfd(self: *IoUring) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.UNREGISTER_EVENTFD,
null,
0,
);
try handle_registration_result(res);
}
 
/// Registers an array of buffers for use with `read_fixed` and `write_fixed`.
pub fn register_buffers(self: *IoUring, buffers: []const os.iovec) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(
self.fd,
.REGISTER_BUFFERS,
buffers.ptr,
@as(u32, @intCast(buffers.len)),
);
try handle_registration_result(res);
}
 
/// Unregister the registered buffers.
pub fn unregister_buffers(self: *IoUring) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(self.fd, .UNREGISTER_BUFFERS, null, 0);
switch (linux.getErrno(res)) {
.SUCCESS => {},
.NXIO => return error.BuffersNotRegistered,
else => |errno| return os.unexpectedErrno(errno),
}
}
 
fn handle_registration_result(res: usize) !void {
switch (linux.getErrno(res)) {
.SUCCESS => {},
// One or more fds in the array are invalid, or the kernel does not support sparse sets:
.BADF => return error.FileDescriptorInvalid,
.BUSY => return error.FilesAlreadyRegistered,
.INVAL => return error.FilesEmpty,
// Adding `nr_args` file references would exceed the maximum allowed number of files the
// user is allowed to have according to the per-user RLIMIT_NOFILE resource limit and
// the CAP_SYS_RESOURCE capability is not set, or `nr_args` exceeds the maximum allowed
// for a fixed file set (older kernels have a limit of 1024 files vs 64K files):
.MFILE => return error.UserFdQuotaExceeded,
// Insufficient kernel resources, or the caller had a non-zero RLIMIT_MEMLOCK soft
// resource limit but tried to lock more memory than the limit permitted (not enforced
// when the process is privileged with CAP_IPC_LOCK):
.NOMEM => return error.SystemResources,
// Attempt to register files on a ring already registering files or being torn down:
.NXIO => return error.RingShuttingDownOrAlreadyRegisteringFiles,
else => |errno| return os.unexpectedErrno(errno),
}
}
 
/// Unregisters all registered file descriptors previously associated with the ring.
pub fn unregister_files(self: *IoUring) !void {
assert(self.fd >= 0);
const res = linux.io_uring_register(self.fd, .UNREGISTER_FILES, null, 0);
switch (linux.getErrno(res)) {
.SUCCESS => {},
.NXIO => return error.FilesNotRegistered,
else => |errno| return os.unexpectedErrno(errno),
}
}
 
/// Prepares a socket creation request.
/// New socket fd will be returned in completion result.
/// Available since 5.19
pub fn socket(
self: *IoUring,
user_data: u64,
domain: u32,
socket_type: u32,
protocol: u32,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_socket(domain, socket_type, protocol, flags);
sqe.user_data = user_data;
return sqe;
}
 
/// Prepares a socket creation request for registered file at index `file_index`.
/// Available since 5.19
pub fn socket_direct(
self: *IoUring,
user_data: u64,
domain: u32,
socket_type: u32,
protocol: u32,
flags: u32,
file_index: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_socket_direct(domain, socket_type, protocol, flags, file_index);
sqe.user_data = user_data;
return sqe;
}
 
/// Prepares a socket creation request for registered file, index chosen by kernel (file index alloc).
/// File index will be returned in CQE res field.
/// Available since 5.19
pub fn socket_direct_alloc(
self: *IoUring,
user_data: u64,
domain: u32,
socket_type: u32,
protocol: u32,
flags: u32,
) !*linux.io_uring_sqe {
const sqe = try self.get_sqe();
sqe.prep_socket_direct_alloc(domain, socket_type, protocol, flags);
sqe.user_data = user_data;
return sqe;
}
 
pub const SubmissionQueue = struct {
head: *u32,
tail: *u32,
@@ -1441,563 +1440,6 @@ pub const CompletionQueue = struct {
}
};
 
pub fn io_uring_prep_nop(sqe: *linux.io_uring_sqe) void {
sqe.* = .{
.opcode = .NOP,
.flags = 0,
.ioprio = 0,
.fd = 0,
.off = 0,
.addr = 0,
.len = 0,
.rw_flags = 0,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.addr3 = 0,
.resv = 0,
};
}
 
pub fn io_uring_prep_fsync(sqe: *linux.io_uring_sqe, fd: os.fd_t, flags: u32) void {
sqe.* = .{
.opcode = .FSYNC,
.flags = 0,
.ioprio = 0,
.fd = fd,
.off = 0,
.addr = 0,
.len = 0,
.rw_flags = flags,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.addr3 = 0,
.resv = 0,
};
}
 
pub fn io_uring_prep_rw(
op: linux.IORING_OP,
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
addr: u64,
len: usize,
offset: u64,
) void {
sqe.* = .{
.opcode = op,
.flags = 0,
.ioprio = 0,
.fd = fd,
.off = offset,
.addr = addr,
.len = @as(u32, @intCast(len)),
.rw_flags = 0,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.addr3 = 0,
.resv = 0,
};
}
 
pub fn io_uring_prep_read(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: []u8, offset: u64) void {
io_uring_prep_rw(.READ, sqe, fd, @intFromPtr(buffer.ptr), buffer.len, offset);
}
 
pub fn io_uring_prep_write(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: []const u8, offset: u64) void {
io_uring_prep_rw(.WRITE, sqe, fd, @intFromPtr(buffer.ptr), buffer.len, offset);
}
 
pub fn io_uring_prep_splice(sqe: *linux.io_uring_sqe, fd_in: os.fd_t, off_in: u64, fd_out: os.fd_t, off_out: u64, len: usize) void {
io_uring_prep_rw(.SPLICE, sqe, fd_out, undefined, len, off_out);
sqe.addr = off_in;
sqe.splice_fd_in = fd_in;
}
 
pub fn io_uring_prep_readv(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
iovecs: []const os.iovec,
offset: u64,
) void {
io_uring_prep_rw(.READV, sqe, fd, @intFromPtr(iovecs.ptr), iovecs.len, offset);
}
 
pub fn io_uring_prep_writev(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
iovecs: []const os.iovec_const,
offset: u64,
) void {
io_uring_prep_rw(.WRITEV, sqe, fd, @intFromPtr(iovecs.ptr), iovecs.len, offset);
}
 
pub fn io_uring_prep_read_fixed(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: *os.iovec, offset: u64, buffer_index: u16) void {
io_uring_prep_rw(.READ_FIXED, sqe, fd, @intFromPtr(buffer.iov_base), buffer.iov_len, offset);
sqe.buf_index = buffer_index;
}
 
pub fn io_uring_prep_write_fixed(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: *os.iovec, offset: u64, buffer_index: u16) void {
io_uring_prep_rw(.WRITE_FIXED, sqe, fd, @intFromPtr(buffer.iov_base), buffer.iov_len, offset);
sqe.buf_index = buffer_index;
}
 
/// Poll masks previously used to comprise of 16 bits in the flags union of
/// a SQE, but were then extended to comprise of 32 bits in order to make
/// room for additional option flags. To ensure that the correct bits of
/// poll masks are consistently and properly read across multiple kernel
/// versions, poll masks are enforced to be little-endian.
/// https://www.spinics.net/lists/io-uring/msg02848.html
pub inline fn __io_uring_prep_poll_mask(poll_mask: u32) u32 {
return std.mem.nativeToLittle(u32, poll_mask);
}
 
pub fn io_uring_prep_accept(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) void {
// `addr` holds a pointer to `sockaddr`, and `addr2` holds a pointer to socklen_t`.
// `addr2` maps to `sqe.off` (u64) instead of `sqe.len` (which is only a u32).
io_uring_prep_rw(.ACCEPT, sqe, fd, @intFromPtr(addr), 0, @intFromPtr(addrlen));
sqe.rw_flags = flags;
}
 
pub fn io_uring_prep_accept_direct(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
file_index: u32,
) void {
io_uring_prep_accept(sqe, fd, addr, addrlen, flags);
__io_uring_set_target_fixed_file(sqe, file_index);
}
 
pub fn io_uring_prep_multishot_accept_direct(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) void {
io_uring_prep_multishot_accept(sqe, fd, addr, addrlen, flags);
__io_uring_set_target_fixed_file(sqe, linux.IORING_FILE_INDEX_ALLOC);
}
 
fn __io_uring_set_target_fixed_file(sqe: *linux.io_uring_sqe, file_index: u32) void {
const sqe_file_index: u32 = if (file_index == linux.IORING_FILE_INDEX_ALLOC)
linux.IORING_FILE_INDEX_ALLOC
else
// 0 means no fixed files, indexes should be encoded as "index + 1"
file_index + 1;
// This filed is overloaded in liburing:
// splice_fd_in: i32
// sqe_file_index: u32
sqe.splice_fd_in = @bitCast(sqe_file_index);
}
 
pub fn io_uring_prep_connect(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
addr: *const os.sockaddr,
addrlen: os.socklen_t,
) void {
// `addrlen` maps to `sqe.off` (u64) instead of `sqe.len` (which is only a u32).
io_uring_prep_rw(.CONNECT, sqe, fd, @intFromPtr(addr), 0, addrlen);
}
 
pub fn io_uring_prep_epoll_ctl(
sqe: *linux.io_uring_sqe,
epfd: os.fd_t,
fd: os.fd_t,
op: u32,
ev: ?*linux.epoll_event,
) void {
io_uring_prep_rw(.EPOLL_CTL, sqe, epfd, @intFromPtr(ev), op, @as(u64, @intCast(fd)));
}
 
pub fn io_uring_prep_recv(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: []u8, flags: u32) void {
io_uring_prep_rw(.RECV, sqe, fd, @intFromPtr(buffer.ptr), buffer.len, 0);
sqe.rw_flags = flags;
}
 
pub fn io_uring_prep_send(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: []const u8, flags: u32) void {
io_uring_prep_rw(.SEND, sqe, fd, @intFromPtr(buffer.ptr), buffer.len, 0);
sqe.rw_flags = flags;
}
 
pub fn io_uring_prep_send_zc(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: []const u8, flags: u32, zc_flags: u16) void {
io_uring_prep_rw(.SEND_ZC, sqe, fd, @intFromPtr(buffer.ptr), buffer.len, 0);
sqe.rw_flags = flags;
sqe.ioprio = zc_flags;
}
 
pub fn io_uring_prep_send_zc_fixed(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: []const u8, flags: u32, zc_flags: u16, buf_index: u16) void {
io_uring_prep_send_zc(sqe, fd, buffer, flags, zc_flags);
sqe.ioprio |= linux.IORING_RECVSEND_FIXED_BUF;
sqe.buf_index = buf_index;
}
 
pub fn io_uring_prep_sendmsg_zc(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
msg: *const os.msghdr_const,
flags: u32,
) void {
io_uring_prep_sendmsg(sqe, fd, msg, flags);
sqe.opcode = .SENDMSG_ZC;
}
 
pub fn io_uring_prep_recvmsg(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
msg: *os.msghdr,
flags: u32,
) void {
linux.io_uring_prep_rw(.RECVMSG, sqe, fd, @intFromPtr(msg), 1, 0);
sqe.rw_flags = flags;
}
 
pub fn io_uring_prep_sendmsg(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
msg: *const os.msghdr_const,
flags: u32,
) void {
linux.io_uring_prep_rw(.SENDMSG, sqe, fd, @intFromPtr(msg), 1, 0);
sqe.rw_flags = flags;
}
 
pub fn io_uring_prep_openat(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
path: [*:0]const u8,
flags: linux.O,
mode: os.mode_t,
) void {
io_uring_prep_rw(.OPENAT, sqe, fd, @intFromPtr(path), mode, 0);
sqe.rw_flags = @bitCast(flags);
}
 
pub fn io_uring_prep_openat_direct(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
path: [*:0]const u8,
flags: linux.O,
mode: os.mode_t,
file_index: u32,
) void {
io_uring_prep_openat(sqe, fd, path, flags, mode);
__io_uring_set_target_fixed_file(sqe, file_index);
}
 
pub fn io_uring_prep_close(sqe: *linux.io_uring_sqe, fd: os.fd_t) void {
sqe.* = .{
.opcode = .CLOSE,
.flags = 0,
.ioprio = 0,
.fd = fd,
.off = 0,
.addr = 0,
.len = 0,
.rw_flags = 0,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.addr3 = 0,
.resv = 0,
};
}
 
pub fn io_uring_prep_close_direct(sqe: *linux.io_uring_sqe, file_index: u32) void {
io_uring_prep_close(sqe, 0);
__io_uring_set_target_fixed_file(sqe, file_index);
}
 
pub fn io_uring_prep_timeout(
sqe: *linux.io_uring_sqe,
ts: *const os.linux.kernel_timespec,
count: u32,
flags: u32,
) void {
io_uring_prep_rw(.TIMEOUT, sqe, -1, @intFromPtr(ts), 1, count);
sqe.rw_flags = flags;
}
 
pub fn io_uring_prep_timeout_remove(sqe: *linux.io_uring_sqe, timeout_user_data: u64, flags: u32) void {
sqe.* = .{
.opcode = .TIMEOUT_REMOVE,
.flags = 0,
.ioprio = 0,
.fd = -1,
.off = 0,
.addr = timeout_user_data,
.len = 0,
.rw_flags = flags,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.addr3 = 0,
.resv = 0,
};
}
 
pub fn io_uring_prep_link_timeout(
sqe: *linux.io_uring_sqe,
ts: *const os.linux.kernel_timespec,
flags: u32,
) void {
linux.io_uring_prep_rw(.LINK_TIMEOUT, sqe, -1, @intFromPtr(ts), 1, 0);
sqe.rw_flags = flags;
}
 
pub fn io_uring_prep_poll_add(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
poll_mask: u32,
) void {
io_uring_prep_rw(.POLL_ADD, sqe, fd, @intFromPtr(@as(?*anyopaque, null)), 0, 0);
sqe.rw_flags = __io_uring_prep_poll_mask(poll_mask);
}
 
pub fn io_uring_prep_poll_remove(
sqe: *linux.io_uring_sqe,
target_user_data: u64,
) void {
io_uring_prep_rw(.POLL_REMOVE, sqe, -1, target_user_data, 0, 0);
}
 
pub fn io_uring_prep_poll_update(
sqe: *linux.io_uring_sqe,
old_user_data: u64,
new_user_data: u64,
poll_mask: u32,
flags: u32,
) void {
io_uring_prep_rw(.POLL_REMOVE, sqe, -1, old_user_data, flags, new_user_data);
sqe.rw_flags = __io_uring_prep_poll_mask(poll_mask);
}
 
pub fn io_uring_prep_fallocate(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
mode: i32,
offset: u64,
len: u64,
) void {
sqe.* = .{
.opcode = .FALLOCATE,
.flags = 0,
.ioprio = 0,
.fd = fd,
.off = offset,
.addr = len,
.len = @as(u32, @intCast(mode)),
.rw_flags = 0,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.addr3 = 0,
.resv = 0,
};
}
 
pub fn io_uring_prep_statx(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
path: [*:0]const u8,
flags: u32,
mask: u32,
buf: *linux.Statx,
) void {
io_uring_prep_rw(.STATX, sqe, fd, @intFromPtr(path), mask, @intFromPtr(buf));
sqe.rw_flags = flags;
}
 
pub fn io_uring_prep_cancel(
sqe: *linux.io_uring_sqe,
cancel_user_data: u64,
flags: u32,
) void {
io_uring_prep_rw(.ASYNC_CANCEL, sqe, -1, cancel_user_data, 0, 0);
sqe.rw_flags = flags;
}
 
pub fn io_uring_prep_shutdown(
sqe: *linux.io_uring_sqe,
sockfd: os.socket_t,
how: u32,
) void {
io_uring_prep_rw(.SHUTDOWN, sqe, sockfd, 0, how, 0);
}
 
pub fn io_uring_prep_renameat(
sqe: *linux.io_uring_sqe,
old_dir_fd: os.fd_t,
old_path: [*:0]const u8,
new_dir_fd: os.fd_t,
new_path: [*:0]const u8,
flags: u32,
) void {
io_uring_prep_rw(
.RENAMEAT,
sqe,
old_dir_fd,
@intFromPtr(old_path),
0,
@intFromPtr(new_path),
);
sqe.len = @bitCast(new_dir_fd);
sqe.rw_flags = flags;
}
 
pub fn io_uring_prep_unlinkat(
sqe: *linux.io_uring_sqe,
dir_fd: os.fd_t,
path: [*:0]const u8,
flags: u32,
) void {
io_uring_prep_rw(.UNLINKAT, sqe, dir_fd, @intFromPtr(path), 0, 0);
sqe.rw_flags = flags;
}
 
pub fn io_uring_prep_mkdirat(
sqe: *linux.io_uring_sqe,
dir_fd: os.fd_t,
path: [*:0]const u8,
mode: os.mode_t,
) void {
io_uring_prep_rw(.MKDIRAT, sqe, dir_fd, @intFromPtr(path), mode, 0);
}
 
pub fn io_uring_prep_symlinkat(
sqe: *linux.io_uring_sqe,
target: [*:0]const u8,
new_dir_fd: os.fd_t,
link_path: [*:0]const u8,
) void {
io_uring_prep_rw(
.SYMLINKAT,
sqe,
new_dir_fd,
@intFromPtr(target),
0,
@intFromPtr(link_path),
);
}
 
pub fn io_uring_prep_linkat(
sqe: *linux.io_uring_sqe,
old_dir_fd: os.fd_t,
old_path: [*:0]const u8,
new_dir_fd: os.fd_t,
new_path: [*:0]const u8,
flags: u32,
) void {
io_uring_prep_rw(
.LINKAT,
sqe,
old_dir_fd,
@intFromPtr(old_path),
0,
@intFromPtr(new_path),
);
sqe.len = @bitCast(new_dir_fd);
sqe.rw_flags = flags;
}
 
pub fn io_uring_prep_provide_buffers(
sqe: *linux.io_uring_sqe,
buffers: [*]u8,
buffer_len: usize,
num: usize,
group_id: usize,
buffer_id: usize,
) void {
const ptr = @intFromPtr(buffers);
io_uring_prep_rw(.PROVIDE_BUFFERS, sqe, @as(i32, @intCast(num)), ptr, buffer_len, buffer_id);
sqe.buf_index = @intCast(group_id);
}
 
pub fn io_uring_prep_remove_buffers(
sqe: *linux.io_uring_sqe,
num: usize,
group_id: usize,
) void {
io_uring_prep_rw(.REMOVE_BUFFERS, sqe, @as(i32, @intCast(num)), 0, 0, 0);
sqe.buf_index = @intCast(group_id);
}
 
pub fn io_uring_prep_multishot_accept(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) void {
io_uring_prep_accept(sqe, fd, addr, addrlen, flags);
sqe.ioprio |= linux.IORING_ACCEPT_MULTISHOT;
}
 
pub fn io_uring_prep_socket(
sqe: *linux.io_uring_sqe,
domain: u32,
socket_type: u32,
protocol: u32,
flags: u32,
) void {
io_uring_prep_rw(.SOCKET, sqe, @intCast(domain), 0, protocol, socket_type);
sqe.rw_flags = flags;
}
 
pub fn io_uring_prep_socket_direct(
sqe: *linux.io_uring_sqe,
domain: u32,
socket_type: u32,
protocol: u32,
flags: u32,
file_index: u32,
) void {
io_uring_prep_socket(sqe, domain, socket_type, protocol, flags);
__io_uring_set_target_fixed_file(sqe, file_index);
}
 
pub fn io_uring_prep_socket_direct_alloc(
sqe: *linux.io_uring_sqe,
domain: u32,
socket_type: u32,
protocol: u32,
flags: u32,
) void {
io_uring_prep_socket(sqe, domain, socket_type, protocol, flags);
__io_uring_set_target_fixed_file(sqe, linux.IORING_FILE_INDEX_ALLOC);
}
 
pub fn io_uring_prep_waitid(
sqe: *linux.io_uring_sqe,
id_type: linux.P,
id: i32,
infop: *linux.siginfo_t,
options: u32,
flags: u32,
) void {
io_uring_prep_rw(.WAITID, sqe, id, 0, @intFromEnum(id_type), @intFromPtr(infop));
sqe.rw_flags = flags;
sqe.splice_fd_in = @bitCast(options);
}
 
test "structs/offsets/entries" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
@@ -2009,14 +1451,14 @@ test "structs/offsets/entries" {
try testing.expectEqual(0x8000000, linux.IORING_OFF_CQ_RING);
try testing.expectEqual(0x10000000, linux.IORING_OFF_SQES);
 
try testing.expectError(error.EntriesZero, IO_Uring.init(0, 0));
try testing.expectError(error.EntriesNotPowerOfTwo, IO_Uring.init(3, 0));
try testing.expectError(error.EntriesZero, IoUring.init(0, 0));
try testing.expectError(error.EntriesNotPowerOfTwo, IoUring.init(3, 0));
}
 
test "nop" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2083,7 +1525,7 @@ test "nop" {
test "readv" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2125,7 +1567,7 @@ test "readv" {
test "writev/fsync/readv" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(4, 0) catch |err| switch (err) {
var ring = IoUring.init(4, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2195,7 +1637,7 @@ test "writev/fsync/readv" {
test "write/read" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(2, 0) catch |err| switch (err) {
var ring = IoUring.init(2, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2242,7 +1684,7 @@ test "write/read" {
test "splice/read" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(4, 0) catch |err| switch (err) {
var ring = IoUring.init(4, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2313,7 +1755,7 @@ test "splice/read" {
test "write_fixed/read_fixed" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(2, 0) catch |err| switch (err) {
var ring = IoUring.init(2, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2378,7 +1820,7 @@ test "write_fixed/read_fixed" {
test "openat" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2432,7 +1874,7 @@ test "openat" {
test "close" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2463,7 +1905,7 @@ test "close" {
test "accept/connect/send/recv" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(16, 0) catch |err| switch (err) {
var ring = IoUring.init(16, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2476,8 +1918,8 @@ test "accept/connect/send/recv" {
const buffer_send = [_]u8{ 1, 0, 1, 0, 1, 0, 1, 0, 1, 0 };
var buffer_recv = [_]u8{ 0, 1, 0, 1, 0 };
 
const send = try ring.send(0xeeeeeeee, socket_test_harness.client, buffer_send[0..], 0);
send.flags |= linux.IOSQE_IO_LINK;
const sqe_send = try ring.send(0xeeeeeeee, socket_test_harness.client, buffer_send[0..], 0);
sqe_send.flags |= linux.IOSQE_IO_LINK;
_ = try ring.recv(0xffffffff, socket_test_harness.server, .{ .buffer = buffer_recv[0..] }, 0);
try testing.expectEqual(@as(u32, 2), try ring.submit());
 
@@ -2504,7 +1946,7 @@ test "accept/connect/send/recv" {
test "sendmsg/recvmsg" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(2, 0) catch |err| switch (err) {
var ring = IoUring.init(2, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2591,7 +2033,7 @@ test "sendmsg/recvmsg" {
test "timeout (after a relative time)" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2622,7 +2064,7 @@ test "timeout (after a relative time)" {
test "timeout (after a number of completions)" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(2, 0) catch |err| switch (err) {
var ring = IoUring.init(2, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2655,7 +2097,7 @@ test "timeout (after a number of completions)" {
test "timeout_remove" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(2, 0) catch |err| switch (err) {
var ring = IoUring.init(2, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2715,7 +2157,7 @@ test "timeout_remove" {
test "accept/connect/recv/link_timeout" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(16, 0) catch |err| switch (err) {
var ring = IoUring.init(16, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2764,7 +2206,7 @@ test "accept/connect/recv/link_timeout" {
test "fallocate" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2810,7 +2252,7 @@ test "fallocate" {
test "statx" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2867,7 +2309,7 @@ test "statx" {
test "accept/connect/recv/cancel" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(16, 0) catch |err| switch (err) {
var ring = IoUring.init(16, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -2917,7 +2359,7 @@ test "accept/connect/recv/cancel" {
test "register_files_update" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3004,7 +2446,7 @@ test "register_files_update" {
test "shutdown" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(16, 0) catch |err| switch (err) {
var ring = IoUring.init(16, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3068,7 +2510,7 @@ test "shutdown" {
test "renameat" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3129,15 +2571,15 @@ test "renameat" {
defer new_file.close();
 
var new_file_data: [16]u8 = undefined;
const read = try new_file.readAll(&new_file_data);
try testing.expectEqualStrings("hello", new_file_data[0..read]);
const bytes_read = try new_file.readAll(&new_file_data);
try testing.expectEqualStrings("hello", new_file_data[0..bytes_read]);
}
}
 
test "unlinkat" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3189,7 +2631,7 @@ test "unlinkat" {
test "mkdirat" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3233,7 +2675,7 @@ test "mkdirat" {
test "symlinkat" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3281,7 +2723,7 @@ test "symlinkat" {
test "linkat" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3333,14 +2775,14 @@ test "linkat" {
defer second_file.close();
 
var second_file_data: [16]u8 = undefined;
const read = try second_file.readAll(&second_file_data);
try testing.expectEqualStrings("hello", second_file_data[0..read]);
const bytes_read = try second_file.readAll(&second_file_data);
try testing.expectEqualStrings("hello", second_file_data[0..bytes_read]);
}
 
test "provide_buffers: read" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3472,7 +2914,7 @@ test "provide_buffers: read" {
test "remove_buffers" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3561,7 +3003,7 @@ test "remove_buffers" {
test "provide_buffers: accept/connect/send/recv" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(16, 0) catch |err| switch (err) {
var ring = IoUring.init(16, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3736,7 +3178,7 @@ const SocketTestHarness = struct {
}
};
 
fn createSocketTestHarness(ring: *IO_Uring) !SocketTestHarness {
fn createSocketTestHarness(ring: *IoUring) !SocketTestHarness {
// Create a TCP server socket
var address = try net.Address.parseIp4("127.0.0.1", 0);
const listener_socket = try createListenerSocket(&address);
@@ -3805,7 +3247,7 @@ fn createListenerSocket(address: *net.Address) !os.socket_t {
test "accept multishot" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
 
var ring = IO_Uring.init(16, 0) catch |err| switch (err) {
var ring = IoUring.init(16, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3844,7 +3286,7 @@ test "accept multishot" {
test "accept/connect/send_zc/recv" {
try skipKernelLessThan(.{ .major = 6, .minor = 0, .patch = 0 });
 
var ring = IO_Uring.init(16, 0) catch |err| switch (err) {
var ring = IoUring.init(16, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3858,8 +3300,8 @@ test "accept/connect/send_zc/recv" {
var buffer_recv = [_]u8{0} ** 10;
 
// zero-copy send
const send = try ring.send_zc(0xeeeeeeee, socket_test_harness.client, buffer_send[0..], 0, 0);
send.flags |= linux.IOSQE_IO_LINK;
const sqe_send = try ring.send_zc(0xeeeeeeee, socket_test_harness.client, buffer_send[0..], 0, 0);
sqe_send.flags |= linux.IOSQE_IO_LINK;
_ = try ring.recv(0xffffffff, socket_test_harness.server, .{ .buffer = buffer_recv[0..] }, 0);
try testing.expectEqual(@as(u32, 2), try ring.submit());
 
@@ -3897,7 +3339,7 @@ test "accept/connect/send_zc/recv" {
test "accept_direct" {
try skipKernelLessThan(.{ .major = 5, .minor = 19, .patch = 0 });
 
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -3977,7 +3419,7 @@ test "accept_direct" {
test "accept_multishot_direct" {
try skipKernelLessThan(.{ .major = 5, .minor = 19, .patch = 0 });
 
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -4035,7 +3477,7 @@ test "accept_multishot_direct" {
test "socket" {
try skipKernelLessThan(.{ .major = 5, .minor = 19, .patch = 0 });
 
var ring = IO_Uring.init(1, 0) catch |err| switch (err) {
var ring = IoUring.init(1, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -4058,7 +3500,7 @@ test "socket" {
test "socket_direct/socket_direct_alloc/close_direct" {
try skipKernelLessThan(.{ .major = 5, .minor = 19, .patch = 0 });
 
var ring = IO_Uring.init(2, 0) catch |err| switch (err) {
var ring = IoUring.init(2, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -4136,7 +3578,7 @@ test "socket_direct/socket_direct_alloc/close_direct" {
test "openat_direct/close_direct" {
try skipKernelLessThan(.{ .major = 5, .minor = 19, .patch = 0 });
 
var ring = IO_Uring.init(2, 0) catch |err| switch (err) {
var ring = IoUring.init(2, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
@@ -4187,7 +3629,7 @@ test "openat_direct/close_direct" {
test "waitid" {
try skipKernelLessThan(.{ .major = 6, .minor = 7, .patch = 0 });
 
var ring = IO_Uring.init(16, 0) catch |err| switch (err) {
var ring = IoUring.init(16, 0) catch |err| switch (err) {
error.SystemOutdated => return error.SkipZigTest,
error.PermissionDenied => return error.SkipZigTest,
else => return err,
 
filename was Deleted added: 2966, removed: 3062, total 0
@@ -0,0 +1,579 @@
//! Contains only the definition of `io_uring_sqe`.
//! Split into its own file to compartmentalize the initialization methods.
 
const std = @import("../../std.zig");
const os = std.os;
const linux = os.linux;
 
pub const io_uring_sqe = extern struct {
opcode: linux.IORING_OP,
flags: u8,
ioprio: u16,
fd: i32,
off: u64,
addr: u64,
len: u32,
rw_flags: u32,
user_data: u64,
buf_index: u16,
personality: u16,
splice_fd_in: i32,
addr3: u64,
resv: u64,
 
pub fn prep_nop(sqe: *linux.io_uring_sqe) void {
sqe.* = .{
.opcode = .NOP,
.flags = 0,
.ioprio = 0,
.fd = 0,
.off = 0,
.addr = 0,
.len = 0,
.rw_flags = 0,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.addr3 = 0,
.resv = 0,
};
}
 
pub fn prep_fsync(sqe: *linux.io_uring_sqe, fd: os.fd_t, flags: u32) void {
sqe.* = .{
.opcode = .FSYNC,
.flags = 0,
.ioprio = 0,
.fd = fd,
.off = 0,
.addr = 0,
.len = 0,
.rw_flags = flags,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.addr3 = 0,
.resv = 0,
};
}
 
pub fn prep_rw(
sqe: *linux.io_uring_sqe,
op: linux.IORING_OP,
fd: os.fd_t,
addr: u64,
len: usize,
offset: u64,
) void {
sqe.* = .{
.opcode = op,
.flags = 0,
.ioprio = 0,
.fd = fd,
.off = offset,
.addr = addr,
.len = @intCast(len),
.rw_flags = 0,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.addr3 = 0,
.resv = 0,
};
}
 
pub fn prep_read(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: []u8, offset: u64) void {
sqe.prep_rw(.READ, fd, @intFromPtr(buffer.ptr), buffer.len, offset);
}
 
pub fn prep_write(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: []const u8, offset: u64) void {
sqe.prep_rw(.WRITE, fd, @intFromPtr(buffer.ptr), buffer.len, offset);
}
 
pub fn prep_splice(sqe: *linux.io_uring_sqe, fd_in: os.fd_t, off_in: u64, fd_out: os.fd_t, off_out: u64, len: usize) void {
sqe.prep_rw(.SPLICE, fd_out, undefined, len, off_out);
sqe.addr = off_in;
sqe.splice_fd_in = fd_in;
}
 
pub fn prep_readv(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
iovecs: []const os.iovec,
offset: u64,
) void {
sqe.prep_rw(.READV, fd, @intFromPtr(iovecs.ptr), iovecs.len, offset);
}
 
pub fn prep_writev(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
iovecs: []const os.iovec_const,
offset: u64,
) void {
sqe.prep_rw(.WRITEV, fd, @intFromPtr(iovecs.ptr), iovecs.len, offset);
}
 
pub fn prep_read_fixed(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: *os.iovec, offset: u64, buffer_index: u16) void {
sqe.prep_rw(.READ_FIXED, fd, @intFromPtr(buffer.iov_base), buffer.iov_len, offset);
sqe.buf_index = buffer_index;
}
 
pub fn prep_write_fixed(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: *os.iovec, offset: u64, buffer_index: u16) void {
sqe.prep_rw(.WRITE_FIXED, fd, @intFromPtr(buffer.iov_base), buffer.iov_len, offset);
sqe.buf_index = buffer_index;
}
 
pub fn prep_accept(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) void {
// `addr` holds a pointer to `sockaddr`, and `addr2` holds a pointer to socklen_t`.
// `addr2` maps to `sqe.off` (u64) instead of `sqe.len` (which is only a u32).
sqe.prep_rw(.ACCEPT, fd, @intFromPtr(addr), 0, @intFromPtr(addrlen));
sqe.rw_flags = flags;
}
 
pub fn prep_accept_direct(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
file_index: u32,
) void {
prep_accept(sqe, fd, addr, addrlen, flags);
__io_uring_set_target_fixed_file(sqe, file_index);
}
 
pub fn prep_multishot_accept_direct(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) void {
prep_multishot_accept(sqe, fd, addr, addrlen, flags);
__io_uring_set_target_fixed_file(sqe, linux.IORING_FILE_INDEX_ALLOC);
}
 
fn __io_uring_set_target_fixed_file(sqe: *linux.io_uring_sqe, file_index: u32) void {
const sqe_file_index: u32 = if (file_index == linux.IORING_FILE_INDEX_ALLOC)
linux.IORING_FILE_INDEX_ALLOC
else
// 0 means no fixed files, indexes should be encoded as "index + 1"
file_index + 1;
// This filed is overloaded in liburing:
// splice_fd_in: i32
// sqe_file_index: u32
sqe.splice_fd_in = @bitCast(sqe_file_index);
}
 
pub fn prep_connect(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
addr: *const os.sockaddr,
addrlen: os.socklen_t,
) void {
// `addrlen` maps to `sqe.off` (u64) instead of `sqe.len` (which is only a u32).
sqe.prep_rw(.CONNECT, fd, @intFromPtr(addr), 0, addrlen);
}
 
pub fn prep_epoll_ctl(
sqe: *linux.io_uring_sqe,
epfd: os.fd_t,
fd: os.fd_t,
op: u32,
ev: ?*linux.epoll_event,
) void {
sqe.prep_rw(.EPOLL_CTL, epfd, @intFromPtr(ev), op, @intCast(fd));
}
 
pub fn prep_recv(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: []u8, flags: u32) void {
sqe.prep_rw(.RECV, fd, @intFromPtr(buffer.ptr), buffer.len, 0);
sqe.rw_flags = flags;
}
 
pub fn prep_send(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: []const u8, flags: u32) void {
sqe.prep_rw(.SEND, fd, @intFromPtr(buffer.ptr), buffer.len, 0);
sqe.rw_flags = flags;
}
 
pub fn prep_send_zc(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: []const u8, flags: u32, zc_flags: u16) void {
sqe.prep_rw(.SEND_ZC, fd, @intFromPtr(buffer.ptr), buffer.len, 0);
sqe.rw_flags = flags;
sqe.ioprio = zc_flags;
}
 
pub fn prep_send_zc_fixed(sqe: *linux.io_uring_sqe, fd: os.fd_t, buffer: []const u8, flags: u32, zc_flags: u16, buf_index: u16) void {
prep_send_zc(sqe, fd, buffer, flags, zc_flags);
sqe.ioprio |= linux.IORING_RECVSEND_FIXED_BUF;
sqe.buf_index = buf_index;
}
 
pub fn prep_sendmsg_zc(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
msg: *const os.msghdr_const,
flags: u32,
) void {
prep_sendmsg(sqe, fd, msg, flags);
sqe.opcode = .SENDMSG_ZC;
}
 
pub fn prep_recvmsg(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
msg: *os.msghdr,
flags: u32,
) void {
sqe.prep_rw(.RECVMSG, fd, @intFromPtr(msg), 1, 0);
sqe.rw_flags = flags;
}
 
pub fn prep_sendmsg(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
msg: *const os.msghdr_const,
flags: u32,
) void {
sqe.prep_rw(.SENDMSG, fd, @intFromPtr(msg), 1, 0);
sqe.rw_flags = flags;
}
 
pub fn prep_openat(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
path: [*:0]const u8,
flags: linux.O,
mode: os.mode_t,
) void {
sqe.prep_rw(.OPENAT, fd, @intFromPtr(path), mode, 0);
sqe.rw_flags = @bitCast(flags);
}
 
pub fn prep_openat_direct(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
path: [*:0]const u8,
flags: linux.O,
mode: os.mode_t,
file_index: u32,
) void {
prep_openat(sqe, fd, path, flags, mode);
__io_uring_set_target_fixed_file(sqe, file_index);
}
 
pub fn prep_close(sqe: *linux.io_uring_sqe, fd: os.fd_t) void {
sqe.* = .{
.opcode = .CLOSE,
.flags = 0,
.ioprio = 0,
.fd = fd,
.off = 0,
.addr = 0,
.len = 0,
.rw_flags = 0,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.addr3 = 0,
.resv = 0,
};
}
 
pub fn prep_close_direct(sqe: *linux.io_uring_sqe, file_index: u32) void {
prep_close(sqe, 0);
__io_uring_set_target_fixed_file(sqe, file_index);
}
 
pub fn prep_timeout(
sqe: *linux.io_uring_sqe,
ts: *const os.linux.kernel_timespec,
count: u32,
flags: u32,
) void {
sqe.prep_rw(.TIMEOUT, -1, @intFromPtr(ts), 1, count);
sqe.rw_flags = flags;
}
 
pub fn prep_timeout_remove(sqe: *linux.io_uring_sqe, timeout_user_data: u64, flags: u32) void {
sqe.* = .{
.opcode = .TIMEOUT_REMOVE,
.flags = 0,
.ioprio = 0,
.fd = -1,
.off = 0,
.addr = timeout_user_data,
.len = 0,
.rw_flags = flags,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.addr3 = 0,
.resv = 0,
};
}
 
pub fn prep_link_timeout(
sqe: *linux.io_uring_sqe,
ts: *const os.linux.kernel_timespec,
flags: u32,
) void {
sqe.prep_rw(.LINK_TIMEOUT, -1, @intFromPtr(ts), 1, 0);
sqe.rw_flags = flags;
}
 
pub fn prep_poll_add(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
poll_mask: u32,
) void {
sqe.prep_rw(.POLL_ADD, fd, @intFromPtr(@as(?*anyopaque, null)), 0, 0);
// Poll masks previously used to comprise of 16 bits in the flags union of
// a SQE, but were then extended to comprise of 32 bits in order to make
// room for additional option flags. To ensure that the correct bits of
// poll masks are consistently and properly read across multiple kernel
// versions, poll masks are enforced to be little-endian.
// https://www.spinics.net/lists/io-uring/msg02848.html
sqe.rw_flags = std.mem.nativeToLittle(u32, poll_mask);
}
 
pub fn prep_poll_remove(
sqe: *linux.io_uring_sqe,
target_user_data: u64,
) void {
sqe.prep_rw(.POLL_REMOVE, -1, target_user_data, 0, 0);
}
 
pub fn prep_poll_update(
sqe: *linux.io_uring_sqe,
old_user_data: u64,
new_user_data: u64,
poll_mask: u32,
flags: u32,
) void {
sqe.prep_rw(.POLL_REMOVE, -1, old_user_data, flags, new_user_data);
// Poll masks previously used to comprise of 16 bits in the flags union of
// a SQE, but were then extended to comprise of 32 bits in order to make
// room for additional option flags. To ensure that the correct bits of
// poll masks are consistently and properly read across multiple kernel
// versions, poll masks are enforced to be little-endian.
// https://www.spinics.net/lists/io-uring/msg02848.html
sqe.rw_flags = std.mem.nativeToLittle(u32, poll_mask);
}
 
pub fn prep_fallocate(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
mode: i32,
offset: u64,
len: u64,
) void {
sqe.* = .{
.opcode = .FALLOCATE,
.flags = 0,
.ioprio = 0,
.fd = fd,
.off = offset,
.addr = len,
.len = @intCast(mode),
.rw_flags = 0,
.user_data = 0,
.buf_index = 0,
.personality = 0,
.splice_fd_in = 0,
.addr3 = 0,
.resv = 0,
};
}
 
pub fn prep_statx(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
path: [*:0]const u8,
flags: u32,
mask: u32,
buf: *linux.Statx,
) void {
sqe.prep_rw(.STATX, fd, @intFromPtr(path), mask, @intFromPtr(buf));
sqe.rw_flags = flags;
}
 
pub fn prep_cancel(
sqe: *linux.io_uring_sqe,
cancel_user_data: u64,
flags: u32,
) void {
sqe.prep_rw(.ASYNC_CANCEL, -1, cancel_user_data, 0, 0);
sqe.rw_flags = flags;
}
 
pub fn prep_shutdown(
sqe: *linux.io_uring_sqe,
sockfd: os.socket_t,
how: u32,
) void {
sqe.prep_rw(.SHUTDOWN, sockfd, 0, how, 0);
}
 
pub fn prep_renameat(
sqe: *linux.io_uring_sqe,
old_dir_fd: os.fd_t,
old_path: [*:0]const u8,
new_dir_fd: os.fd_t,
new_path: [*:0]const u8,
flags: u32,
) void {
sqe.prep_rw(
.RENAMEAT,
old_dir_fd,
@intFromPtr(old_path),
0,
@intFromPtr(new_path),
);
sqe.len = @bitCast(new_dir_fd);
sqe.rw_flags = flags;
}
 
pub fn prep_unlinkat(
sqe: *linux.io_uring_sqe,
dir_fd: os.fd_t,
path: [*:0]const u8,
flags: u32,
) void {
sqe.prep_rw(.UNLINKAT, dir_fd, @intFromPtr(path), 0, 0);
sqe.rw_flags = flags;
}
 
pub fn prep_mkdirat(
sqe: *linux.io_uring_sqe,
dir_fd: os.fd_t,
path: [*:0]const u8,
mode: os.mode_t,
) void {
sqe.prep_rw(.MKDIRAT, dir_fd, @intFromPtr(path), mode, 0);
}
 
pub fn prep_symlinkat(
sqe: *linux.io_uring_sqe,
target: [*:0]const u8,
new_dir_fd: os.fd_t,
link_path: [*:0]const u8,
) void {
sqe.prep_rw(
.SYMLINKAT,
new_dir_fd,
@intFromPtr(target),
0,
@intFromPtr(link_path),
);
}
 
pub fn prep_linkat(
sqe: *linux.io_uring_sqe,
old_dir_fd: os.fd_t,
old_path: [*:0]const u8,
new_dir_fd: os.fd_t,
new_path: [*:0]const u8,
flags: u32,
) void {
sqe.prep_rw(
.LINKAT,
old_dir_fd,
@intFromPtr(old_path),
0,
@intFromPtr(new_path),
);
sqe.len = @bitCast(new_dir_fd);
sqe.rw_flags = flags;
}
 
pub fn prep_provide_buffers(
sqe: *linux.io_uring_sqe,
buffers: [*]u8,
buffer_len: usize,
num: usize,
group_id: usize,
buffer_id: usize,
) void {
const ptr = @intFromPtr(buffers);
sqe.prep_rw(.PROVIDE_BUFFERS, @intCast(num), ptr, buffer_len, buffer_id);
sqe.buf_index = @intCast(group_id);
}
 
pub fn prep_remove_buffers(
sqe: *linux.io_uring_sqe,
num: usize,
group_id: usize,
) void {
sqe.prep_rw(.REMOVE_BUFFERS, @intCast(num), 0, 0, 0);
sqe.buf_index = @intCast(group_id);
}
 
pub fn prep_multishot_accept(
sqe: *linux.io_uring_sqe,
fd: os.fd_t,
addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
flags: u32,
) void {
prep_accept(sqe, fd, addr, addrlen, flags);
sqe.ioprio |= linux.IORING_ACCEPT_MULTISHOT;
}
 
pub fn prep_socket(
sqe: *linux.io_uring_sqe,
domain: u32,
socket_type: u32,
protocol: u32,
flags: u32,
) void {
sqe.prep_rw(.SOCKET, @intCast(domain), 0, protocol, socket_type);
sqe.rw_flags = flags;
}
 
pub fn prep_socket_direct(
sqe: *linux.io_uring_sqe,
domain: u32,
socket_type: u32,
protocol: u32,
flags: u32,
file_index: u32,
) void {
prep_socket(sqe, domain, socket_type, protocol, flags);
__io_uring_set_target_fixed_file(sqe, file_index);
}
 
pub fn prep_socket_direct_alloc(
sqe: *linux.io_uring_sqe,
domain: u32,
socket_type: u32,
protocol: u32,
flags: u32,
) void {
prep_socket(sqe, domain, socket_type, protocol, flags);
__io_uring_set_target_fixed_file(sqe, linux.IORING_FILE_INDEX_ALLOC);
}
 
pub fn prep_waitid(
sqe: *linux.io_uring_sqe,
id_type: linux.P,
id: i32,
infop: *linux.siginfo_t,
options: u32,
flags: u32,
) void {
sqe.prep_rw(.WAITID, id, 0, @intFromEnum(id_type), @intFromPtr(infop));
sqe.rw_flags = flags;
sqe.splice_fd_in = @bitCast(options);
}
};
 
lib/std/os/linux/test.zig added: 2966, removed: 3062, total 0
@@ -120,3 +120,7 @@ test "fadvise" {
const ret = linux.fadvise(file.handle, 0, 0, linux.POSIX_FADV.SEQUENTIAL);
try expectEqual(@as(usize, 0), ret);
}
 
test {
_ = linux.IoUring;
}
 
lib/std/os/windows.zig added: 2966, removed: 3062, total 0
@@ -3796,290 +3796,300 @@ pub const EXCEPTION_RECORD = extern struct {
ExceptionInformation: [15]usize,
};
 
pub usingnamespace switch (native_arch) {
.x86 => struct {
pub const FLOATING_SAVE_AREA = extern struct {
ControlWord: DWORD,
StatusWord: DWORD,
TagWord: DWORD,
ErrorOffset: DWORD,
ErrorSelector: DWORD,
DataOffset: DWORD,
DataSelector: DWORD,
RegisterArea: [80]BYTE,
Cr0NpxState: DWORD,
};
 
pub const CONTEXT = extern struct {
ContextFlags: DWORD,
Dr0: DWORD,
Dr1: DWORD,
Dr2: DWORD,
Dr3: DWORD,
Dr6: DWORD,
Dr7: DWORD,
FloatSave: FLOATING_SAVE_AREA,
SegGs: DWORD,
SegFs: DWORD,
SegEs: DWORD,
SegDs: DWORD,
Edi: DWORD,
Esi: DWORD,
Ebx: DWORD,
Edx: DWORD,
Ecx: DWORD,
Eax: DWORD,
Ebp: DWORD,
Eip: DWORD,
SegCs: DWORD,
EFlags: DWORD,
Esp: DWORD,
SegSs: DWORD,
ExtendedRegisters: [512]BYTE,
 
pub fn getRegs(ctx: *const CONTEXT) struct { bp: usize, ip: usize } {
return .{ .bp = ctx.Ebp, .ip = ctx.Eip };
}
};
pub const FLOATING_SAVE_AREA = switch (native_arch) {
.x86 => extern struct {
ControlWord: DWORD,
StatusWord: DWORD,
TagWord: DWORD,
ErrorOffset: DWORD,
ErrorSelector: DWORD,
DataOffset: DWORD,
DataSelector: DWORD,
RegisterArea: [80]BYTE,
Cr0NpxState: DWORD,
},
.x86_64 => struct {
pub const M128A = extern struct {
else => @compileError("FLOATING_SAVE_AREA only defined on x86"),
};
 
pub const M128A = switch (native_arch) {
.x86_64 => extern struct {
Low: ULONGLONG,
High: LONGLONG,
},
else => @compileError("M128A only defined on x86_64"),
};
 
pub const XMM_SAVE_AREA32 = switch (native_arch) {
.x86_64 => extern struct {
ControlWord: WORD,
StatusWord: WORD,
TagWord: BYTE,
Reserved1: BYTE,
ErrorOpcode: WORD,
ErrorOffset: DWORD,
ErrorSelector: WORD,
Reserved2: WORD,
DataOffset: DWORD,
DataSelector: WORD,
Reserved3: WORD,
MxCsr: DWORD,
MxCsr_Mask: DWORD,
FloatRegisters: [8]M128A,
XmmRegisters: [16]M128A,
Reserved4: [96]BYTE,
},
else => @compileError("XMM_SAVE_AREA32 only defined on x86_64"),
};
 
pub const NEON128 = switch (native_arch) {
.aarch64 => extern union {
DUMMYSTRUCTNAME: extern struct {
Low: ULONGLONG,
High: LONGLONG,
};
 
pub const XMM_SAVE_AREA32 = extern struct {
ControlWord: WORD,
StatusWord: WORD,
TagWord: BYTE,
Reserved1: BYTE,
ErrorOpcode: WORD,
ErrorOffset: DWORD,
ErrorSelector: WORD,
Reserved2: WORD,
DataOffset: DWORD,
DataSelector: WORD,
Reserved3: WORD,
MxCsr: DWORD,
MxCsr_Mask: DWORD,
FloatRegisters: [8]M128A,
XmmRegisters: [16]M128A,
Reserved4: [96]BYTE,
};
 
pub const CONTEXT = extern struct {
P1Home: DWORD64 align(16),
P2Home: DWORD64,
P3Home: DWORD64,
P4Home: DWORD64,
P5Home: DWORD64,
P6Home: DWORD64,
ContextFlags: DWORD,
MxCsr: DWORD,
SegCs: WORD,
SegDs: WORD,
SegEs: WORD,
SegFs: WORD,
SegGs: WORD,
SegSs: WORD,
EFlags: DWORD,
Dr0: DWORD64,
Dr1: DWORD64,
Dr2: DWORD64,
Dr3: DWORD64,
Dr6: DWORD64,
Dr7: DWORD64,
Rax: DWORD64,
Rcx: DWORD64,
Rdx: DWORD64,
Rbx: DWORD64,
Rsp: DWORD64,
Rbp: DWORD64,
Rsi: DWORD64,
Rdi: DWORD64,
R8: DWORD64,
R9: DWORD64,
R10: DWORD64,
R11: DWORD64,
R12: DWORD64,
R13: DWORD64,
R14: DWORD64,
R15: DWORD64,
Rip: DWORD64,
DUMMYUNIONNAME: extern union {
FltSave: XMM_SAVE_AREA32,
FloatSave: XMM_SAVE_AREA32,
DUMMYSTRUCTNAME: extern struct {
Header: [2]M128A,
Legacy: [8]M128A,
Xmm0: M128A,
Xmm1: M128A,
Xmm2: M128A,
Xmm3: M128A,
Xmm4: M128A,
Xmm5: M128A,
Xmm6: M128A,
Xmm7: M128A,
Xmm8: M128A,
Xmm9: M128A,
Xmm10: M128A,
Xmm11: M128A,
Xmm12: M128A,
Xmm13: M128A,
Xmm14: M128A,
Xmm15: M128A,
},
},
VectorRegister: [26]M128A,
VectorControl: DWORD64,
DebugControl: DWORD64,
LastBranchToRip: DWORD64,
LastBranchFromRip: DWORD64,
LastExceptionToRip: DWORD64,
LastExceptionFromRip: DWORD64,
 
pub fn getRegs(ctx: *const CONTEXT) struct { bp: usize, ip: usize, sp: usize } {
return .{ .bp = ctx.Rbp, .ip = ctx.Rip, .sp = ctx.Rsp };
}
 
pub fn setIp(ctx: *CONTEXT, ip: usize) void {
ctx.Rip = ip;
}
 
pub fn setSp(ctx: *CONTEXT, sp: usize) void {
ctx.Rsp = sp;
}
};
 
pub const RUNTIME_FUNCTION = extern struct {
BeginAddress: DWORD,
EndAddress: DWORD,
UnwindData: DWORD,
};
 
pub const KNONVOLATILE_CONTEXT_POINTERS = extern struct {
FloatingContext: [16]?*M128A,
IntegerContext: [16]?*ULONG64,
};
},
D: [2]f64,
S: [4]f32,
H: [8]WORD,
B: [16]BYTE,
},
.aarch64 => struct {
pub const NEON128 = extern union {
else => @compileError("NEON128 only defined on aarch64"),
};
 
pub const CONTEXT = switch (native_arch) {
.x86 => extern struct {
ContextFlags: DWORD,
Dr0: DWORD,
Dr1: DWORD,
Dr2: DWORD,
Dr3: DWORD,
Dr6: DWORD,
Dr7: DWORD,
FloatSave: FLOATING_SAVE_AREA,
SegGs: DWORD,
SegFs: DWORD,
SegEs: DWORD,
SegDs: DWORD,
Edi: DWORD,
Esi: DWORD,
Ebx: DWORD,
Edx: DWORD,
Ecx: DWORD,
Eax: DWORD,
Ebp: DWORD,
Eip: DWORD,
SegCs: DWORD,
EFlags: DWORD,
Esp: DWORD,
SegSs: DWORD,
ExtendedRegisters: [512]BYTE,
 
pub fn getRegs(ctx: *const CONTEXT) struct { bp: usize, ip: usize } {
return .{ .bp = ctx.Ebp, .ip = ctx.Eip };
}
},
.x86_64 => extern struct {
P1Home: DWORD64 align(16),
P2Home: DWORD64,
P3Home: DWORD64,
P4Home: DWORD64,
P5Home: DWORD64,
P6Home: DWORD64,
ContextFlags: DWORD,
MxCsr: DWORD,
SegCs: WORD,
SegDs: WORD,
SegEs: WORD,
SegFs: WORD,
SegGs: WORD,
SegSs: WORD,
EFlags: DWORD,
Dr0: DWORD64,
Dr1: DWORD64,
Dr2: DWORD64,
Dr3: DWORD64,
Dr6: DWORD64,
Dr7: DWORD64,
Rax: DWORD64,
Rcx: DWORD64,
Rdx: DWORD64,
Rbx: DWORD64,
Rsp: DWORD64,
Rbp: DWORD64,
Rsi: DWORD64,
Rdi: DWORD64,
R8: DWORD64,
R9: DWORD64,
R10: DWORD64,
R11: DWORD64,
R12: DWORD64,
R13: DWORD64,
R14: DWORD64,
R15: DWORD64,
Rip: DWORD64,
DUMMYUNIONNAME: extern union {
FltSave: XMM_SAVE_AREA32,
FloatSave: XMM_SAVE_AREA32,
DUMMYSTRUCTNAME: extern struct {
Low: ULONGLONG,
High: LONGLONG,
Header: [2]M128A,
Legacy: [8]M128A,
Xmm0: M128A,
Xmm1: M128A,
Xmm2: M128A,
Xmm3: M128A,
Xmm4: M128A,
Xmm5: M128A,
Xmm6: M128A,
Xmm7: M128A,
Xmm8: M128A,
Xmm9: M128A,
Xmm10: M128A,
Xmm11: M128A,
Xmm12: M128A,
Xmm13: M128A,
Xmm14: M128A,
Xmm15: M128A,
},
D: [2]f64,
S: [4]f32,
H: [8]WORD,
B: [16]BYTE,
};
},
VectorRegister: [26]M128A,
VectorControl: DWORD64,
DebugControl: DWORD64,
LastBranchToRip: DWORD64,
LastBranchFromRip: DWORD64,
LastExceptionToRip: DWORD64,
LastExceptionFromRip: DWORD64,
 
pub const CONTEXT = extern struct {
ContextFlags: ULONG align(16),
Cpsr: ULONG,
DUMMYUNIONNAME: extern union {
DUMMYSTRUCTNAME: extern struct {
X0: DWORD64,
X1: DWORD64,
X2: DWORD64,
X3: DWORD64,
X4: DWORD64,
X5: DWORD64,
X6: DWORD64,
X7: DWORD64,
X8: DWORD64,
X9: DWORD64,
X10: DWORD64,
X11: DWORD64,
X12: DWORD64,
X13: DWORD64,
X14: DWORD64,
X15: DWORD64,
X16: DWORD64,
X17: DWORD64,
X18: DWORD64,
X19: DWORD64,
X20: DWORD64,
X21: DWORD64,
X22: DWORD64,
X23: DWORD64,
X24: DWORD64,
X25: DWORD64,
X26: DWORD64,
X27: DWORD64,
X28: DWORD64,
Fp: DWORD64,
Lr: DWORD64,
},
X: [31]DWORD64,
},
Sp: DWORD64,
Pc: DWORD64,
V: [32]NEON128,
Fpcr: DWORD,
Fpsr: DWORD,
Bcr: [8]DWORD,
Bvr: [8]DWORD64,
Wcr: [2]DWORD,
Wvr: [2]DWORD64,
pub fn getRegs(ctx: *const CONTEXT) struct { bp: usize, ip: usize, sp: usize } {
return .{ .bp = ctx.Rbp, .ip = ctx.Rip, .sp = ctx.Rsp };
}
 
pub fn getRegs(ctx: *const CONTEXT) struct { bp: usize, ip: usize, sp: usize } {
return .{
.bp = ctx.DUMMYUNIONNAME.DUMMYSTRUCTNAME.Fp,
.ip = ctx.Pc,
.sp = ctx.Sp,
};
}
pub fn setIp(ctx: *CONTEXT, ip: usize) void {
ctx.Rip = ip;
}
 
pub fn setIp(ctx: *CONTEXT, ip: usize) void {
ctx.Pc = ip;
}
 
pub fn setSp(ctx: *CONTEXT, sp: usize) void {
ctx.Sp = sp;
}
};
 
pub const RUNTIME_FUNCTION = extern struct {
BeginAddress: DWORD,
DUMMYUNIONNAME: extern union {
UnwindData: DWORD,
DUMMYSTRUCTNAME: packed struct {
Flag: u2,
FunctionLength: u11,
RegF: u3,
RegI: u4,
H: u1,
CR: u2,
FrameSize: u9,
},
},
};
 
pub const KNONVOLATILE_CONTEXT_POINTERS = extern struct {
X19: ?*DWORD64,
X20: ?*DWORD64,
X21: ?*DWORD64,
X22: ?*DWORD64,
X23: ?*DWORD64,
X24: ?*DWORD64,
X25: ?*DWORD64,
X26: ?*DWORD64,
X27: ?*DWORD64,
X28: ?*DWORD64,
Fp: ?*DWORD64,
Lr: ?*DWORD64,
D8: ?*DWORD64,
D9: ?*DWORD64,
D10: ?*DWORD64,
D11: ?*DWORD64,
D12: ?*DWORD64,
D13: ?*DWORD64,
D14: ?*DWORD64,
D15: ?*DWORD64,
};
pub fn setSp(ctx: *CONTEXT, sp: usize) void {
ctx.Rsp = sp;
}
},
else => struct {},
.aarch64 => extern struct {
ContextFlags: ULONG align(16),
Cpsr: ULONG,
DUMMYUNIONNAME: extern union {
DUMMYSTRUCTNAME: extern struct {
X0: DWORD64,
X1: DWORD64,
X2: DWORD64,
X3: DWORD64,
X4: DWORD64,
X5: DWORD64,
X6: DWORD64,
X7: DWORD64,
X8: DWORD64,
X9: DWORD64,
X10: DWORD64,
X11: DWORD64,
X12: DWORD64,
X13: DWORD64,
X14: DWORD64,
X15: DWORD64,
X16: DWORD64,
X17: DWORD64,
X18: DWORD64,
X19: DWORD64,
X20: DWORD64,
X21: DWORD64,
X22: DWORD64,
X23: DWORD64,
X24: DWORD64,
X25: DWORD64,
X26: DWORD64,
X27: DWORD64,
X28: DWORD64,
Fp: DWORD64,
Lr: DWORD64,
},
X: [31]DWORD64,
},
Sp: DWORD64,
Pc: DWORD64,
V: [32]NEON128,
Fpcr: DWORD,
Fpsr: DWORD,
Bcr: [8]DWORD,
Bvr: [8]DWORD64,
Wcr: [2]DWORD,
Wvr: [2]DWORD64,
 
pub fn getRegs(ctx: *const CONTEXT) struct { bp: usize, ip: usize, sp: usize } {
return .{
.bp = ctx.DUMMYUNIONNAME.DUMMYSTRUCTNAME.Fp,
.ip = ctx.Pc,
.sp = ctx.Sp,
};
}
 
pub fn setIp(ctx: *CONTEXT, ip: usize) void {
ctx.Pc = ip;
}
 
pub fn setSp(ctx: *CONTEXT, sp: usize) void {
ctx.Sp = sp;
}
},
else => @compileError("CONTEXT is not defined for this architecture"),
};
 
pub const RUNTIME_FUNCTION = switch (native_arch) {
.x86_64 => extern struct {
BeginAddress: DWORD,
EndAddress: DWORD,
UnwindData: DWORD,
},
.aarch64 => extern struct {
BeginAddress: DWORD,
DUMMYUNIONNAME: extern union {
UnwindData: DWORD,
DUMMYSTRUCTNAME: packed struct {
Flag: u2,
FunctionLength: u11,
RegF: u3,
RegI: u4,
H: u1,
CR: u2,
FrameSize: u9,
},
},
},
else => @compileError("RUNTIME_FUNCTION is not defined for this architecture"),
};
 
pub const KNONVOLATILE_CONTEXT_POINTERS = switch (native_arch) {
.x86_64 => extern struct {
FloatingContext: [16]?*M128A,
IntegerContext: [16]?*ULONG64,
},
.aarch64 => extern struct {
X19: ?*DWORD64,
X20: ?*DWORD64,
X21: ?*DWORD64,
X22: ?*DWORD64,
X23: ?*DWORD64,
X24: ?*DWORD64,
X25: ?*DWORD64,
X26: ?*DWORD64,
X27: ?*DWORD64,
X28: ?*DWORD64,
Fp: ?*DWORD64,
Lr: ?*DWORD64,
D8: ?*DWORD64,
D9: ?*DWORD64,
D10: ?*DWORD64,
D11: ?*DWORD64,
D12: ?*DWORD64,
D13: ?*DWORD64,
D14: ?*DWORD64,
D15: ?*DWORD64,
},
else => @compileError("KNONVOLATILE_CONTEXT_POINTERS is not defined for this architecture"),
};
 
pub const EXCEPTION_POINTERS = extern struct {