srctree

notcancername parent 32e88251 69461bca
std.array_list: Document and reduce illegal behavior in ArrayLists

inlinesplit
lib/std/array_list.zig added: 156, removed: 79, total 77
@@ -128,7 +128,7 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
 
/// The caller owns the returned memory. Empties this ArrayList.
pub fn toOwnedSliceSentinel(self: *Self, comptime sentinel: T) Allocator.Error!SentinelSlice(sentinel) {
try self.ensureTotalCapacityPrecise(self.items.len + 1);
try self.ensureTotalCapacityPrecise(try addOrOom(self.items.len, 1));
self.appendAssumeCapacity(sentinel);
const result = try self.toOwnedSlice();
return result[0 .. result.len - 1 :sentinel];
@@ -141,25 +141,27 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
return cloned;
}
 
/// Insert `item` at index `n`. Moves `list[n .. list.len]` to higher indices to make room.
/// If `n` is equal to the length of the list this operation is equivalent to append.
/// Insert `item` at index `i`. Moves `list[i .. list.len]` to higher indices to make room.
/// If `i` is equal to the length of the list this operation is equivalent to append.
/// This operation is O(N).
/// Invalidates pointers if additional memory is needed.
pub fn insert(self: *Self, n: usize, item: T) Allocator.Error!void {
const dst = try self.addManyAt(n, 1);
/// **Asserts that `i <= self.items.len`.**
pub fn insert(self: *Self, i: usize, item: T) Allocator.Error!void {
const dst = try self.addManyAt(i, 1);
dst[0] = item;
}
 
/// Insert `item` at index `n`. Moves `list[n .. list.len]` to higher indices to make room.
/// If `n` is equal to the length of the list this operation is equivalent to append.
/// Insert `item` at index `i`. Moves `list[i .. list.len]` to higher indices to make room.
/// If `i` is equal to the length of the list this operation is equivalent to appendAssumeCapacity.
/// This operation is O(N).
/// Asserts that there is enough capacity for the new item.
pub fn insertAssumeCapacity(self: *Self, n: usize, item: T) void {
/// **Asserts that `i <= self.items.len`.**
/// **Asserts that `self.items.len < self.capacity` .**
pub fn insertAssumeCapacity(self: *Self, i: usize, item: T) void {
assert(self.items.len < self.capacity);
self.items.len += 1;
 
mem.copyBackwards(T, self.items[n + 1 .. self.items.len], self.items[n .. self.items.len - 1]);
self.items[n] = item;
mem.copyBackwards(T, self.items[i + 1 .. self.items.len], self.items[i .. self.items.len - 1]);
self.items[i] = item;
}
 
/// Add `count` new elements at position `index`, which have
@@ -169,8 +171,9 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
/// Invalidates pre-existing pointers to elements at and after `index`.
/// Invalidates all pre-existing element pointers if capacity must be
/// increased to accomodate the new elements.
/// **Asserts that `index <= self.items.len`.**
pub fn addManyAt(self: *Self, index: usize, count: usize) Allocator.Error![]T {
const new_len = self.items.len + count;
const new_len = try addOrOom(self.items.len, count);
 
if (self.capacity >= new_len)
return addManyAtAssumeCapacity(self, index, count);
@@ -205,9 +208,10 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
/// `undefined` values. Returns a slice pointing to the newly allocated
/// elements, which becomes invalid after various `ArrayList`
/// operations.
/// Asserts that there is enough capacity for the new elements.
/// Invalidates pre-existing pointers to elements at and after `index`, but
/// does not invalidate any before that.
/// **Asserts that `index <= self.items.len`.**
/// **Asserts that the list can hold `count` additional items.**
pub fn addManyAtAssumeCapacity(self: *Self, index: usize, count: usize) []T {
const new_len = self.items.len + count;
assert(self.capacity >= new_len);
@@ -224,6 +228,7 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
/// Invalidates pre-existing pointers to elements at and after `index`.
/// Invalidates all pre-existing element pointers if capacity must be
/// increased to accomodate the new elements.
/// **Asserts that `index <= self.items.len`.**
pub fn insertSlice(
self: *Self,
index: usize,
@@ -237,8 +242,9 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
/// Grows list if `len < new_items.len`.
/// Shrinks list if `len > new_items.len`.
/// Invalidates pointers if this ArrayList is resized.
/// **Asserts that `start <= self.items.len`.**
pub fn replaceRange(self: *Self, start: usize, len: usize, new_items: []const T) Allocator.Error!void {
const after_range = start + len;
const after_range = try addOrOom(start, len);
const range = self.items[start..after_range];
 
if (range.len == new_items.len)
@@ -251,7 +257,7 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
try self.insertSlice(after_range, rest);
} else {
@memcpy(range[0..new_items.len], new_items);
const after_subrange = start + new_items.len;
const after_subrange = try addOrOom(start, new_items.len);
 
for (self.items[after_range..], 0..) |item, i| {
self.items[after_subrange..][i] = item;
@@ -261,16 +267,16 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
}
}
 
/// Extend the list by 1 element. Allocates more memory as necessary.
/// Extends the list by 1 element. Allocates more memory as necessary.
/// Invalidates pointers if additional memory is needed.
pub fn append(self: *Self, item: T) Allocator.Error!void {
const new_item_ptr = try self.addOne();
new_item_ptr.* = item;
}
 
/// Extend the list by 1 element, but assert `self.capacity`
/// is sufficient to hold an additional item. **Does not**
/// Extends the list by 1 element. Does not
/// invalidate pointers.
/// **Asserts that the list can hold one additional item.**
pub fn appendAssumeCapacity(self: *Self, item: T) void {
const new_item_ptr = self.addOneAssumeCapacity();
new_item_ptr.* = item;
@@ -278,10 +284,11 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
 
/// Remove the element at index `i`, shift elements after index
/// `i` forward, and return the removed element.
/// Asserts the array has at least one item.
/// Invalidates pointers to end of list.
/// This operation is O(N).
/// This preserves item order. Use `swapRemove` if order preservation is not important.
/// **Asserts that `i < self.items.len`.**
/// **Asserts that the list is not empty.**
pub fn orderedRemove(self: *Self, i: usize) T {
const newlen = self.items.len - 1;
if (newlen == i) return self.pop();
@@ -297,6 +304,8 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
/// The empty slot is filled from the end of the list.
/// This operation is O(1).
/// This may not preserve item order. Use `orderedRemove` if you need to preserve order.
/// **Asserts that `i < self.items.len`.**
/// **Asserts that the list is not empty.**
pub fn swapRemove(self: *Self, i: usize) T {
if (self.items.len - 1 == i) return self.pop();
 
@@ -313,8 +322,8 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
self.appendSliceAssumeCapacity(items);
}
 
/// Append the slice of items to the list, asserting the capacity is already
/// enough to store the new items. **Does not** invalidate pointers.
/// Append the slice of items to the list. Does not invalidate pointers.
/// **Asserts that the list can hold `items.len` additional items.**
pub fn appendSliceAssumeCapacity(self: *Self, items: []const T) void {
const old_len = self.items.len;
const new_len = old_len + items.len;
@@ -332,10 +341,10 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
self.appendUnalignedSliceAssumeCapacity(items);
}
 
/// Append the slice of items to the list, asserting the capacity is already
/// enough to store the new items. **Does not** invalidate pointers.
/// Append the slice of items to the list. **Does not** invalidate pointers.
/// Only call this function if calling `appendSliceAssumeCapacity` instead
/// would be a compile error.
/// **Asserts that the list can hold `items.len` additional items.**
pub fn appendUnalignedSliceAssumeCapacity(self: *Self, items: []align(1) const T) void {
const old_len = self.items.len;
const new_len = old_len + items.len;
@@ -348,7 +357,7 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
@compileError("The Writer interface is only defined for ArrayList(u8) " ++
"but the given type is ArrayList(" ++ @typeName(T) ++ ")")
else
std.io.Writer(*Self, error{OutOfMemory}, appendWrite);
std.io.Writer(*Self, Allocator.Error, appendWrite);
 
/// Initializes a Writer which will append to the list.
pub fn writer(self: *Self) Writer {
@@ -370,14 +379,15 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
/// have a more optimal memset codegen in case it has a repeated byte pattern.
pub inline fn appendNTimes(self: *Self, value: T, n: usize) Allocator.Error!void {
const old_len = self.items.len;
try self.resize(self.items.len + n);
try self.resize(try addOrOom(self.items.len, n));
@memset(self.items[old_len..self.items.len], value);
}
 
/// Append a value to the list `n` times.
/// Asserts the capacity is enough. **Does not** invalidate pointers.
/// Does not invalidate pointers.
/// The function is inline so that a comptime-known `value` parameter will
/// have a more optimal memset codegen in case it has a repeated byte pattern.
/// **Asserts that the list can hold `n` additional items.**
pub inline fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void {
const new_len = self.items.len + n;
assert(new_len <= self.capacity);
@@ -395,6 +405,7 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
 
/// Reduce allocated capacity to `new_len`.
/// May invalidate element pointers.
/// **Asserts that `new_len <= self.items.len`.**
pub fn shrinkAndFree(self: *Self, new_len: usize) void {
var unmanaged = self.moveToUnmanaged();
unmanaged.shrinkAndFree(self.allocator, new_len);
@@ -403,6 +414,7 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
 
/// Reduce length to `new_len`.
/// Invalidates pointers for the elements `items[new_len..]`.
/// **Asserts that `new_len <= self.items.len`.**
pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
assert(new_len <= self.items.len);
self.items.len = new_len;
@@ -466,7 +478,7 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
/// Modify the array so that it can hold at least `additional_count` **more** items.
/// Invalidates pointers if additional memory is needed.
pub fn ensureUnusedCapacity(self: *Self, additional_count: usize) Allocator.Error!void {
return self.ensureTotalCapacity(self.items.len + additional_count);
return self.ensureTotalCapacity(try addOrOom(self.items.len, additional_count));
}
 
/// Increases the array's length to match the full capacity that is already allocated.
@@ -478,14 +490,14 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
/// Increase length by 1, returning pointer to the new item.
/// The returned pointer becomes invalid when the list resized.
pub fn addOne(self: *Self) Allocator.Error!*T {
try self.ensureTotalCapacity(self.items.len + 1);
try self.ensureUnusedCapacity(1);
return self.addOneAssumeCapacity();
}
 
/// Increase length by 1, returning pointer to the new item.
/// Asserts that there is already space for the new item without allocating more.
/// The returned pointer becomes invalid when the list is resized.
/// **Does not** invalidate element pointers.
/// Does not invalidate element pointers.
/// **Asserts that the list can hold one additional item.**
pub fn addOneAssumeCapacity(self: *Self) *T {
assert(self.items.len < self.capacity);
self.items.len += 1;
@@ -498,15 +510,15 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
/// Resizes list if `self.capacity` is not large enough.
pub fn addManyAsArray(self: *Self, comptime n: usize) Allocator.Error!*[n]T {
const prev_len = self.items.len;
try self.resize(self.items.len + n);
try self.resize(try addOrOom(self.items.len, n));
return self.items[prev_len..][0..n];
}
 
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is an array pointing to the newly allocated elements.
/// Asserts that there is already space for the new item without allocating more.
/// **Does not** invalidate element pointers.
/// Does not invalidate element pointers.
/// The returned pointer becomes invalid when the list is resized.
/// **Asserts that the list can hold `n` additional items.**
pub fn addManyAsArrayAssumeCapacity(self: *Self, comptime n: usize) *[n]T {
assert(self.items.len + n <= self.capacity);
const prev_len = self.items.len;
@@ -520,15 +532,15 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
/// Resizes list if `self.capacity` is not large enough.
pub fn addManyAsSlice(self: *Self, n: usize) Allocator.Error![]T {
const prev_len = self.items.len;
try self.resize(self.items.len + n);
try self.resize(try addOrOom(self.items.len, n));
return self.items[prev_len..][0..n];
}
 
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is a slice pointing to the newly allocated elements.
/// Asserts that there is already space for the new item without allocating more.
/// **Does not** invalidate element pointers.
/// Does not invalidate element pointers.
/// The returned pointer becomes invalid when the list is resized.
/// **Asserts that the list can hold `n` additional items.**
pub fn addManyAsSliceAssumeCapacity(self: *Self, n: usize) []T {
assert(self.items.len + n <= self.capacity);
const prev_len = self.items.len;
@@ -537,8 +549,8 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
}
 
/// Remove and return the last element from the list.
/// Asserts the list has at least one item.
/// Invalidates pointers to the removed element.
/// **Asserts that the list is not empty.**
pub fn pop(self: *Self) T {
const val = self.items[self.items.len - 1];
self.items.len -= 1;
@@ -568,15 +580,14 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
return self.allocatedSlice()[self.items.len..];
}
 
/// Return the last element from the list.
/// Asserts the list has at least one item.
/// Returns the last element from the list.
/// **Asserts that the list is not empty.**
pub fn getLast(self: Self) T {
const val = self.items[self.items.len - 1];
return val;
}
 
/// Return the last element from the list, or
/// return `null` if list is empty.
/// Returns the last element from the list, or `null` if list is empty.
pub fn getLastOrNull(self: Self) ?T {
if (self.items.len == 0) return null;
return self.getLast();
@@ -635,8 +646,8 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
 
/// Initialize with externally-managed memory. The buffer determines the
/// capacity, and the length is set to zero.
/// When initialized this way, all methods that accept an Allocator
/// argument are illegal to call.
/// **When initialized this way, all methods that accept an Allocator
/// argument cause illegal behavior**.
pub fn initBuffer(buffer: Slice) Self {
return .{
.items = buffer[0..0],
@@ -695,7 +706,7 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
 
/// The caller owns the returned memory. ArrayList becomes empty.
pub fn toOwnedSliceSentinel(self: *Self, allocator: Allocator, comptime sentinel: T) Allocator.Error!SentinelSlice(sentinel) {
try self.ensureTotalCapacityPrecise(allocator, self.items.len + 1);
try self.ensureTotalCapacityPrecise(allocator, try addOrOom(self.items.len, 1));
self.appendAssumeCapacity(sentinel);
const result = try self.toOwnedSlice(allocator);
return result[0 .. result.len - 1 :sentinel];
@@ -708,25 +719,27 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
return cloned;
}
 
/// Insert `item` at index `n`. Moves `list[n .. list.len]` to higher indices to make room.
/// If `n` is equal to the length of the list this operation is equivalent to append.
/// Insert `item` at index `i`. Moves `list[i .. list.len]` to higher indices to make room.
/// If `i` is equal to the length of the list this operation is equivalent to append.
/// This operation is O(N).
/// Invalidates pointers if additional memory is needed.
pub fn insert(self: *Self, allocator: Allocator, n: usize, item: T) Allocator.Error!void {
const dst = try self.addManyAt(allocator, n, 1);
/// **Asserts that `i < self.items.len`.**
pub fn insert(self: *Self, allocator: Allocator, i: usize, item: T) Allocator.Error!void {
const dst = try self.addManyAt(allocator, i, 1);
dst[0] = item;
}
 
/// Insert `item` at index `n`. Moves `list[n .. list.len]` to higher indices to make room.
/// If `n` is equal to the length of the list this operation is equivalent to append.
/// Insert `item` at index `i`. Moves `list[i .. list.len]` to higher indices to make room.
/// If in` is equal to the length of the list this operation is equivalent to append.
/// This operation is O(N).
/// Asserts that there is enough capacity for the new item.
pub fn insertAssumeCapacity(self: *Self, n: usize, item: T) void {
/// **Asserts that `i < self.items.len`.**
/// **Asserts that the list can hold one additional item.**
pub fn insertAssumeCapacity(self: *Self, i: usize, item: T) void {
assert(self.items.len < self.capacity);
self.items.len += 1;
 
mem.copyBackwards(T, self.items[n + 1 .. self.items.len], self.items[n .. self.items.len - 1]);
self.items[n] = item;
mem.copyBackwards(T, self.items[i + 1 .. self.items.len], self.items[i .. self.items.len - 1]);
self.items[i] = item;
}
 
/// Add `count` new elements at position `index`, which have
@@ -736,6 +749,7 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
/// Invalidates pre-existing pointers to elements at and after `index`.
/// Invalidates all pre-existing element pointers if capacity must be
/// increased to accomodate the new elements.
/// **Asserts that `index <= self.items.len`.**
pub fn addManyAt(
self: *Self,
allocator: Allocator,
@@ -751,9 +765,10 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
/// `undefined` values. Returns a slice pointing to the newly allocated
/// elements, which becomes invalid after various `ArrayList`
/// operations.
/// Asserts that there is enough capacity for the new elements.
/// Invalidates pre-existing pointers to elements at and after `index`, but
/// does not invalidate any before that.
/// **Asserts that `index <= self.items.len`.**
/// **Asserts that the list can hold `count` additional items.**
pub fn addManyAtAssumeCapacity(self: *Self, index: usize, count: usize) []T {
const new_len = self.items.len + count;
assert(self.capacity >= new_len);
@@ -770,6 +785,7 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
/// Invalidates pre-existing pointers to elements at and after `index`.
/// Invalidates all pre-existing element pointers if capacity must be
/// increased to accomodate the new elements.
/// **Asserts that `index <= self.items.len`.**
pub fn insertSlice(
self: *Self,
allocator: Allocator,
@@ -788,6 +804,7 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
/// Grows list if `len < new_items.len`.
/// Shrinks list if `len > new_items.len`
/// Invalidates pointers if this ArrayList is resized.
/// **Asserts that `start <= self.items.len`.**
pub fn replaceRange(
self: *Self,
allocator: Allocator,
@@ -807,17 +824,18 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
new_item_ptr.* = item;
}
 
/// Extend the list by 1 element, but asserting `self.capacity`
/// is sufficient to hold an additional item.
/// Extend the list by 1 element.
/// **Asserts that the list can hold one additional item.**
pub fn appendAssumeCapacity(self: *Self, item: T) void {
const new_item_ptr = self.addOneAssumeCapacity();
new_item_ptr.* = item;
}
 
/// Remove the element at index `i` from the list and return its value.
/// Asserts the array has at least one item. Invalidates pointers to
/// last element.
/// Invalidates pointers to the last element.
/// This operation is O(N).
/// **Asserts that `i < self.items.len`.**
/// **Asserts that the list is not empty.**
pub fn orderedRemove(self: *Self, i: usize) T {
const newlen = self.items.len - 1;
if (newlen == i) return self.pop();
@@ -833,6 +851,8 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
/// The empty slot is filled from the end of the list.
/// Invalidates pointers to last element.
/// This operation is O(1).
/// **Asserts that `i < self.items.len`.**
/// **Asserts that the list is not empty.**
pub fn swapRemove(self: *Self, i: usize) T {
if (self.items.len - 1 == i) return self.pop();
 
@@ -849,8 +869,8 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
self.appendSliceAssumeCapacity(items);
}
 
/// Append the slice of items to the list, asserting the capacity is enough
/// to store the new items.
/// Append the slice of items to the list.
/// **Asserts that the list can hold `items.len` additional items.**
pub fn appendSliceAssumeCapacity(self: *Self, items: []const T) void {
const old_len = self.items.len;
const new_len = old_len + items.len;
@@ -868,9 +888,10 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
self.appendUnalignedSliceAssumeCapacity(items);
}
 
/// Append an unaligned slice of items to the list, asserting the capacity is enough
/// to store the new items. Only call this function if a call to `appendSliceAssumeCapacity`
/// Append an unaligned slice of items to the list.
/// Only call this function if a call to `appendSliceAssumeCapacity`
/// instead would be a compile error.
/// **Asserts that the list can hold `items.len` additional items.**
pub fn appendUnalignedSliceAssumeCapacity(self: *Self, items: []align(1) const T) void {
const old_len = self.items.len;
const new_len = old_len + items.len;
@@ -888,7 +909,7 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
@compileError("The Writer interface is only defined for ArrayList(u8) " ++
"but the given type is ArrayList(" ++ @typeName(T) ++ ")")
else
std.io.Writer(WriterContext, error{OutOfMemory}, appendWrite);
std.io.Writer(WriterContext, Allocator.Error, appendWrite);
 
/// Initializes a Writer which will append to the list.
pub fn writer(self: *Self, allocator: Allocator) Writer {
@@ -910,15 +931,15 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
/// have a more optimal memset codegen in case it has a repeated byte pattern.
pub inline fn appendNTimes(self: *Self, allocator: Allocator, value: T, n: usize) Allocator.Error!void {
const old_len = self.items.len;
try self.resize(allocator, self.items.len + n);
try self.resize(allocator, try addOrOom(self.items.len, n));
@memset(self.items[old_len..self.items.len], value);
}
 
/// Append a value to the list `n` times.
/// **Does not** invalidate pointers.
/// Asserts the capacity is enough.
/// The function is inline so that a comptime-known `value` parameter will
/// have a more optimal memset codegen in case it has a repeated byte pattern.
/// have better memset codegen in case it has a repeated byte pattern.
/// **Asserts that the list can hold `n` additional items.**
pub inline fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void {
const new_len = self.items.len + n;
assert(new_len <= self.capacity);
@@ -936,6 +957,7 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
 
/// Reduce allocated capacity to `new_len`.
/// May invalidate element pointers.
/// **Asserts that `new_len <= self.items.len`.**
pub fn shrinkAndFree(self: *Self, allocator: Allocator, new_len: usize) void {
assert(new_len <= self.items.len);
 
@@ -968,6 +990,7 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
/// Reduce length to `new_len`.
/// Invalidates pointers to elements `items[new_len..]`.
/// Keeps capacity the same.
/// **Asserts that `new_len <= self.items.len`.**
pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
assert(new_len <= self.items.len);
self.items.len = new_len;
@@ -1030,12 +1053,12 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
allocator: Allocator,
additional_count: usize,
) Allocator.Error!void {
return self.ensureTotalCapacity(allocator, self.items.len + additional_count);
return self.ensureTotalCapacity(allocator, try addOrOom(self.items.len, additional_count));
}
 
/// Increases the array's length to match the full capacity that is already allocated.
/// The new elements have `undefined` values.
/// **Does not** invalidate pointers.
/// Does not invalidate pointers.
pub fn expandToCapacity(self: *Self) void {
self.items.len = self.capacity;
}
@@ -1043,15 +1066,15 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
/// Increase length by 1, returning pointer to the new item.
/// The returned pointer becomes invalid when the list resized.
pub fn addOne(self: *Self, allocator: Allocator) Allocator.Error!*T {
const newlen = self.items.len + 1;
const newlen = try addOrOom(self.items.len, 1);
try self.ensureTotalCapacity(allocator, newlen);
return self.addOneAssumeCapacity();
}
 
/// Increase length by 1, returning pointer to the new item.
/// Asserts that there is already space for the new item without allocating more.
/// **Does not** invalidate pointers.
/// The returned pointer becomes invalid when the list resized.
/// **Asserts that the list can hold one additional item.**
pub fn addOneAssumeCapacity(self: *Self) *T {
assert(self.items.len < self.capacity);
 
@@ -1064,15 +1087,15 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
/// The returned pointer becomes invalid when the list is resized.
pub fn addManyAsArray(self: *Self, allocator: Allocator, comptime n: usize) Allocator.Error!*[n]T {
const prev_len = self.items.len;
try self.resize(allocator, self.items.len + n);
try self.resize(allocator, try addOrOom(self.items.len, n));
return self.items[prev_len..][0..n];
}
 
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is an array pointing to the newly allocated elements.
/// Asserts that there is already space for the new item without allocating more.
/// **Does not** invalidate pointers.
/// The returned pointer becomes invalid when the list is resized.
/// **Asserts that the list can hold `n` additional items.**
pub fn addManyAsArrayAssumeCapacity(self: *Self, comptime n: usize) *[n]T {
assert(self.items.len + n <= self.capacity);
const prev_len = self.items.len;
@@ -1086,15 +1109,15 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
/// Resizes list if `self.capacity` is not large enough.
pub fn addManyAsSlice(self: *Self, allocator: Allocator, n: usize) Allocator.Error![]T {
const prev_len = self.items.len;
try self.resize(allocator, self.items.len + n);
try self.resize(allocator, try addOrOom(self.items.len, n));
return self.items[prev_len..][0..n];
}
 
/// Resize the array, adding `n` new elements, which have `undefined` values.
/// The return value is a slice pointing to the newly allocated elements.
/// Asserts that there is already space for the new item without allocating more.
/// **Does not** invalidate element pointers.
/// Does not invalidate element pointers.
/// The returned pointer becomes invalid when the list is resized.
/// **Asserts that the list can hold `n` additional items.**
pub fn addManyAsSliceAssumeCapacity(self: *Self, n: usize) []T {
assert(self.items.len + n <= self.capacity);
const prev_len = self.items.len;
@@ -1103,8 +1126,8 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
}
 
/// Remove and return the last element from the list.
/// Asserts the list has at least one item.
/// Invalidates pointers to last element.
/// **Asserts that the list is not empty.**
pub fn pop(self: *Self) T {
const val = self.items[self.items.len - 1];
self.items.len -= 1;
@@ -1134,7 +1157,7 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
}
 
/// Return the last element from the list.
/// Asserts the list has at least one item.
/// **Asserts that the list is not empty.**
pub fn getLast(self: Self) T {
const val = self.items[self.items.len - 1];
return val;
@@ -1160,6 +1183,14 @@ fn growCapacity(current: usize, minimum: usize) usize {
}
}
 
/// Adds a and b, returning `error.OutOfMemory` if overflow occurred.
/// This is equivalent to `math.add`. See #18467 for why it is used.
fn addOrOom(a: usize, b: usize) error{OutOfMemory}!usize {
const ov = @addWithOverflow(a, b);
if (ov[1] != 0) return error.OutOfMemory;
return ov[0];
}
 
test "std.ArrayList/ArrayListUnmanaged.init" {
{
var list = ArrayList(i32).init(testing.allocator);
@@ -1952,3 +1983,49 @@ test "std.ArrayList(u32).getLastOrNull()" {
const const_list = list;
try testing.expectEqual(const_list.getLastOrNull().?, 2);
}
 
test "return OutOfMemory when capacity would exceed maximum usize integer value" {
// Because a portable way to create maxInt(usize)-sized slices does not seem to exist yet, this
// will have to do.
 
const a = testing.allocator;
 
var alu = ArrayListUnmanaged(u32){
.items = undefined,
.capacity = math.maxInt(usize),
};
alu.items.len = math.maxInt(usize);
 
try testing.expectError(error.OutOfMemory, alu.append(a, undefined));
try testing.expectError(error.OutOfMemory, alu.appendSlice(a, &.{undefined}));
try testing.expectError(error.OutOfMemory, alu.appendNTimes(a, undefined, 1));
try testing.expectError(error.OutOfMemory, alu.appendUnalignedSlice(a, &.{undefined}));
try testing.expectError(error.OutOfMemory, alu.addOne(a));
try testing.expectError(error.OutOfMemory, alu.addManyAt(a, 0, 1));
try testing.expectError(error.OutOfMemory, alu.addManyAsArray(a, 1));
try testing.expectError(error.OutOfMemory, alu.addManyAsSlice(a, 1));
try testing.expectError(error.OutOfMemory, alu.insert(a, 0, undefined));
try testing.expectError(error.OutOfMemory, alu.insertSlice(a, 0, &.{undefined}));
try testing.expectError(error.OutOfMemory, alu.toOwnedSliceSentinel(a, 0));
try testing.expectError(error.OutOfMemory, alu.ensureUnusedCapacity(a, 1));
 
var al = ArrayList(u32){
.items = undefined,
.capacity = math.maxInt(usize),
.allocator = a,
};
al.items.len = math.maxInt(usize);
 
try testing.expectError(error.OutOfMemory, al.append(undefined));
try testing.expectError(error.OutOfMemory, al.appendSlice(&.{undefined}));
try testing.expectError(error.OutOfMemory, al.appendNTimes(undefined, 1));
try testing.expectError(error.OutOfMemory, al.appendUnalignedSlice(&.{undefined}));
try testing.expectError(error.OutOfMemory, al.addOne());
try testing.expectError(error.OutOfMemory, al.addManyAt(0, 1));
try testing.expectError(error.OutOfMemory, al.addManyAsArray(1));
try testing.expectError(error.OutOfMemory, al.addManyAsSlice(1));
try testing.expectError(error.OutOfMemory, al.insert(0, undefined));
try testing.expectError(error.OutOfMemory, al.insertSlice(0, &.{undefined}));
try testing.expectError(error.OutOfMemory, al.toOwnedSliceSentinel(0));
try testing.expectError(error.OutOfMemory, al.ensureUnusedCapacity(1));
}