@@ -1,4077 +0,0 @@
const std = @import("std");
const builtin = @import("builtin");
const Type = @import("type.zig").Type;
const log2 = std.math.log2;
const assert = std.debug.assert;
const BigIntConst = std.math.big.int.Const;
const BigIntMutable = std.math.big.int.Mutable;
const Target = std.Target;
const Allocator = std.mem.Allocator;
const Module = @import("Module.zig");
const TypedValue = @import("TypedValue.zig");
const Sema = @import("Sema.zig");
const InternPool = @import("InternPool.zig");
pub const Value = struct {
/// We are migrating towards using this for every Value object. However, many
/// values are still represented the legacy way. This is indicated by using
/// InternPool.Index.none.
ip_index: InternPool.Index,
/// This is the raw data, with no bookkeeping, no memory awareness,
/// no de-duplication, and no type system awareness.
/// This union takes advantage of the fact that the first page of memory
/// is unmapped, giving us 4096 possible enum tags that have no payload.
legacy: extern union {
ptr_otherwise: *Payload,
},
// Keep in sync with tools/stage2_pretty_printers_common.py
pub const Tag = enum(usize) {
// The first section of this enum are tags that require no payload.
// After this, the tag requires a payload.
/// When the type is error union:
/// * If the tag is `.@"error"`, the error union is an error.
/// * If the tag is `.eu_payload`, the error union is a payload.
/// * A nested error such as `anyerror!(anyerror!T)` in which the the outer error union
/// is non-error, but the inner error union is an error, is represented as
/// a tag of `.eu_payload`, with a sub-tag of `.@"error"`.
eu_payload,
/// When the type is optional:
/// * If the tag is `.null_value`, the optional is null.
/// * If the tag is `.opt_payload`, the optional is a payload.
/// * A nested optional such as `??T` in which the the outer optional
/// is non-null, but the inner optional is null, is represented as
/// a tag of `.opt_payload`, with a sub-tag of `.null_value`.
opt_payload,
/// Pointer and length as sub `Value` objects.
slice,
/// A slice of u8 whose memory is managed externally.
bytes,
/// This value is repeated some number of times. The amount of times to repeat
/// is stored externally.
repeated,
/// An instance of a struct, array, or vector.
/// Each element/field stored as a `Value`.
/// In the case of sentinel-terminated arrays, the sentinel value *is* stored,
/// so the slice length will be one more than the type's array length.
aggregate,
/// An instance of a union.
@"union",
pub fn Type(comptime t: Tag) type {
return switch (t) {
.eu_payload,
.opt_payload,
.repeated,
=> Payload.SubValue,
.slice => Payload.Slice,
.bytes => Payload.Bytes,
.aggregate => Payload.Aggregate,
.@"union" => Payload.Union,
};
}
pub fn create(comptime t: Tag, ally: Allocator, data: Data(t)) error{OutOfMemory}!Value {
const ptr = try ally.create(t.Type());
ptr.* = .{
.base = .{ .tag = t },
.data = data,
};
return Value{
.ip_index = .none,
.legacy = .{ .ptr_otherwise = &ptr.base },
};
}
pub fn Data(comptime t: Tag) type {
return std.meta.fieldInfo(t.Type(), .data).type;
}
};
pub fn initPayload(payload: *Payload) Value {
return Value{
.ip_index = .none,
.legacy = .{ .ptr_otherwise = payload },
};
}
pub fn tag(self: Value) Tag {
assert(self.ip_index == .none);
return self.legacy.ptr_otherwise.tag;
}
/// Prefer `castTag` to this.
pub fn cast(self: Value, comptime T: type) ?*T {
if (self.ip_index != .none) {
return null;
}
if (@hasField(T, "base_tag")) {
return self.castTag(T.base_tag);
}
inline for (@typeInfo(Tag).Enum.fields) |field| {
const t = @as(Tag, @enumFromInt(field.value));
if (self.legacy.ptr_otherwise.tag == t) {
if (T == t.Type()) {
return @fieldParentPtr(T, "base", self.legacy.ptr_otherwise);
}
return null;
}
}
unreachable;
}
pub fn castTag(self: Value, comptime t: Tag) ?*t.Type() {
if (self.ip_index != .none) return null;
if (self.legacy.ptr_otherwise.tag == t)
return @fieldParentPtr(t.Type(), "base", self.legacy.ptr_otherwise);
return null;
}
pub fn format(val: Value, comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype) !void {
_ = val;
_ = fmt;
_ = options;
_ = writer;
@compileError("do not use format values directly; use either fmtDebug or fmtValue");
}
/// This is a debug function. In order to print values in a meaningful way
/// we also need access to the type.
pub fn dump(
start_val: Value,
comptime fmt: []const u8,
_: std.fmt.FormatOptions,
out_stream: anytype,
) !void {
comptime assert(fmt.len == 0);
if (start_val.ip_index != .none) {
try out_stream.print("(interned: {})", .{start_val.toIntern()});
return;
}
var val = start_val;
while (true) switch (val.tag()) {
.aggregate => {
return out_stream.writeAll("(aggregate)");
},
.@"union" => {
return out_stream.writeAll("(union value)");
},
.bytes => return out_stream.print("\"{}\"", .{std.zig.fmtEscapes(val.castTag(.bytes).?.data)}),
.repeated => {
try out_stream.writeAll("(repeated) ");
val = val.castTag(.repeated).?.data;
},
.eu_payload => {
try out_stream.writeAll("(eu_payload) ");
val = val.castTag(.repeated).?.data;
},
.opt_payload => {
try out_stream.writeAll("(opt_payload) ");
val = val.castTag(.repeated).?.data;
},
.slice => return out_stream.writeAll("(slice)"),
};
}
pub fn fmtDebug(val: Value) std.fmt.Formatter(dump) {
return .{ .data = val };
}
pub fn fmtValue(val: Value, ty: Type, mod: *Module) std.fmt.Formatter(TypedValue.format) {
return .{ .data = .{
.tv = .{ .ty = ty, .val = val },
.mod = mod,
} };
}
/// Asserts that the value is representable as an array of bytes.
/// Returns the value as a null-terminated string stored in the InternPool.
pub fn toIpString(val: Value, ty: Type, mod: *Module) !InternPool.NullTerminatedString {
const ip = &mod.intern_pool;
return switch (mod.intern_pool.indexToKey(val.toIntern())) {
.enum_literal => |enum_literal| enum_literal,
.slice => |slice| try arrayToIpString(val, Value.fromInterned(slice.len).toUnsignedInt(mod), mod),
.aggregate => |aggregate| switch (aggregate.storage) {
.bytes => |bytes| try ip.getOrPutString(mod.gpa, bytes),
.elems => try arrayToIpString(val, ty.arrayLen(mod), mod),
.repeated_elem => |elem| {
const byte = @as(u8, @intCast(Value.fromInterned(elem).toUnsignedInt(mod)));
const len = @as(usize, @intCast(ty.arrayLen(mod)));
try ip.string_bytes.appendNTimes(mod.gpa, byte, len);
return ip.getOrPutTrailingString(mod.gpa, len);
},
},
else => unreachable,
};
}
/// Asserts that the value is representable as an array of bytes.
/// Copies the value into a freshly allocated slice of memory, which is owned by the caller.
pub fn toAllocatedBytes(val: Value, ty: Type, allocator: Allocator, mod: *Module) ![]u8 {
return switch (mod.intern_pool.indexToKey(val.toIntern())) {
.enum_literal => |enum_literal| allocator.dupe(u8, mod.intern_pool.stringToSlice(enum_literal)),
.slice => |slice| try arrayToAllocatedBytes(val, Value.fromInterned(slice.len).toUnsignedInt(mod), allocator, mod),
.aggregate => |aggregate| switch (aggregate.storage) {
.bytes => |bytes| try allocator.dupe(u8, bytes),
.elems => try arrayToAllocatedBytes(val, ty.arrayLen(mod), allocator, mod),
.repeated_elem => |elem| {
const byte = @as(u8, @intCast(Value.fromInterned(elem).toUnsignedInt(mod)));
const result = try allocator.alloc(u8, @as(usize, @intCast(ty.arrayLen(mod))));
@memset(result, byte);
return result;
},
},
else => unreachable,
};
}
fn arrayToAllocatedBytes(val: Value, len: u64, allocator: Allocator, mod: *Module) ![]u8 {
const result = try allocator.alloc(u8, @as(usize, @intCast(len)));
for (result, 0..) |*elem, i| {
const elem_val = try val.elemValue(mod, i);
elem.* = @as(u8, @intCast(elem_val.toUnsignedInt(mod)));
}
return result;
}
fn arrayToIpString(val: Value, len_u64: u64, mod: *Module) !InternPool.NullTerminatedString {
const gpa = mod.gpa;
const ip = &mod.intern_pool;
const len = @as(usize, @intCast(len_u64));
try ip.string_bytes.ensureUnusedCapacity(gpa, len);
for (0..len) |i| {
// I don't think elemValue has the possibility to affect ip.string_bytes. Let's
// assert just to be sure.
const prev = ip.string_bytes.items.len;
const elem_val = try val.elemValue(mod, i);
assert(ip.string_bytes.items.len == prev);
const byte = @as(u8, @intCast(elem_val.toUnsignedInt(mod)));
ip.string_bytes.appendAssumeCapacity(byte);
}
return ip.getOrPutTrailingString(gpa, len);
}
pub fn intern2(val: Value, ty: Type, mod: *Module) Allocator.Error!InternPool.Index {
if (val.ip_index != .none) return val.ip_index;
return intern(val, ty, mod);
}
pub fn intern(val: Value, ty: Type, mod: *Module) Allocator.Error!InternPool.Index {
if (val.ip_index != .none) return (try mod.getCoerced(val, ty)).toIntern();
const ip = &mod.intern_pool;
switch (val.tag()) {
.eu_payload => {
const pl = val.castTag(.eu_payload).?.data;
return mod.intern(.{ .error_union = .{
.ty = ty.toIntern(),
.val = .{ .payload = try pl.intern(ty.errorUnionPayload(mod), mod) },
} });
},
.opt_payload => {
const pl = val.castTag(.opt_payload).?.data;
return mod.intern(.{ .opt = .{
.ty = ty.toIntern(),
.val = try pl.intern(ty.optionalChild(mod), mod),
} });
},
.slice => {
const pl = val.castTag(.slice).?.data;
return mod.intern(.{ .slice = .{
.ty = ty.toIntern(),
.len = try pl.len.intern(Type.usize, mod),
.ptr = try pl.ptr.intern(ty.slicePtrFieldType(mod), mod),
} });
},
.bytes => {
const pl = val.castTag(.bytes).?.data;
return mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .bytes = pl },
} });
},
.repeated => {
const pl = val.castTag(.repeated).?.data;
return mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .repeated_elem = try pl.intern(ty.childType(mod), mod) },
} });
},
.aggregate => {
const len = @as(usize, @intCast(ty.arrayLen(mod)));
const old_elems = val.castTag(.aggregate).?.data[0..len];
const new_elems = try mod.gpa.alloc(InternPool.Index, old_elems.len);
defer mod.gpa.free(new_elems);
const ty_key = ip.indexToKey(ty.toIntern());
for (new_elems, old_elems, 0..) |*new_elem, old_elem, field_i|
new_elem.* = try old_elem.intern(switch (ty_key) {
.struct_type => ty.structFieldType(field_i, mod),
.anon_struct_type => |info| Type.fromInterned(info.types.get(ip)[field_i]),
inline .array_type, .vector_type => |info| Type.fromInterned(info.child),
else => unreachable,
}, mod);
return mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = new_elems },
} });
},
.@"union" => {
const pl = val.castTag(.@"union").?.data;
if (pl.tag) |pl_tag| {
return mod.intern(.{ .un = .{
.ty = ty.toIntern(),
.tag = try pl_tag.intern(ty.unionTagTypeHypothetical(mod), mod),
.val = try pl.val.intern(ty.unionFieldType(pl_tag, mod).?, mod),
} });
} else {
return mod.intern(.{ .un = .{
.ty = ty.toIntern(),
.tag = .none,
.val = try pl.val.intern(try ty.unionBackingType(mod), mod),
} });
}
},
}
}
pub fn unintern(val: Value, arena: Allocator, mod: *Module) Allocator.Error!Value {
return if (val.ip_index == .none) val else switch (mod.intern_pool.indexToKey(val.toIntern())) {
.int_type,
.ptr_type,
.array_type,
.vector_type,
.opt_type,
.anyframe_type,
.error_union_type,
.simple_type,
.struct_type,
.anon_struct_type,
.union_type,
.opaque_type,
.enum_type,
.func_type,
.error_set_type,
.inferred_error_set_type,
.undef,
.simple_value,
.variable,
.extern_func,
.func,
.int,
.err,
.enum_literal,
.enum_tag,
.empty_enum_value,
.float,
.ptr,
=> val,
.error_union => |error_union| switch (error_union.val) {
.err_name => val,
.payload => |payload| Tag.eu_payload.create(arena, Value.fromInterned(payload)),
},
.slice => |slice| Tag.slice.create(arena, .{
.ptr = Value.fromInterned(slice.ptr),
.len = Value.fromInterned(slice.len),
}),
.opt => |opt| switch (opt.val) {
.none => val,
else => |payload| Tag.opt_payload.create(arena, Value.fromInterned(payload)),
},
.aggregate => |aggregate| switch (aggregate.storage) {
.bytes => |bytes| Tag.bytes.create(arena, try arena.dupe(u8, bytes)),
.elems => |old_elems| {
const new_elems = try arena.alloc(Value, old_elems.len);
for (new_elems, old_elems) |*new_elem, old_elem| new_elem.* = Value.fromInterned(old_elem);
return Tag.aggregate.create(arena, new_elems);
},
.repeated_elem => |elem| Tag.repeated.create(arena, Value.fromInterned(elem)),
},
.un => |un| Tag.@"union".create(arena, .{
// toValue asserts that the value cannot be .none which is valid on unions.
.tag = if (un.tag == .none) null else Value.fromInterned(un.tag),
.val = Value.fromInterned(un.val),
}),
.memoized_call => unreachable,
};
}
pub fn fromInterned(i: InternPool.Index) Value {
assert(i != .none);
return .{
.ip_index = i,
.legacy = undefined,
};
}
pub fn toIntern(val: Value) InternPool.Index {
assert(val.ip_index != .none);
return val.ip_index;
}
/// Asserts that the value is representable as a type.
pub fn toType(self: Value) Type {
return Type.fromInterned(self.toIntern());
}
pub fn intFromEnum(val: Value, ty: Type, mod: *Module) Allocator.Error!Value {
const ip = &mod.intern_pool;
return switch (ip.indexToKey(ip.typeOf(val.toIntern()))) {
// Assume it is already an integer and return it directly.
.simple_type, .int_type => val,
.enum_literal => |enum_literal| {
const field_index = ty.enumFieldIndex(enum_literal, mod).?;
return switch (ip.indexToKey(ty.toIntern())) {
// Assume it is already an integer and return it directly.
.simple_type, .int_type => val,
.enum_type => |enum_type| if (enum_type.values.len != 0)
Value.fromInterned(enum_type.values.get(ip)[field_index])
else // Field index and integer values are the same.
mod.intValue(Type.fromInterned(enum_type.tag_ty), field_index),
else => unreachable,
};
},
.enum_type => |enum_type| try mod.getCoerced(val, Type.fromInterned(enum_type.tag_ty)),
else => unreachable,
};
}
/// Asserts the value is an integer.
pub fn toBigInt(val: Value, space: *BigIntSpace, mod: *Module) BigIntConst {
return val.toBigIntAdvanced(space, mod, null) catch unreachable;
}
/// Asserts the value is an integer.
pub fn toBigIntAdvanced(
val: Value,
space: *BigIntSpace,
mod: *Module,
opt_sema: ?*Sema,
) Module.CompileError!BigIntConst {
return switch (val.toIntern()) {
.bool_false => BigIntMutable.init(&space.limbs, 0).toConst(),
.bool_true => BigIntMutable.init(&space.limbs, 1).toConst(),
.null_value => BigIntMutable.init(&space.limbs, 0).toConst(),
else => switch (mod.intern_pool.indexToKey(val.toIntern())) {
.int => |int| switch (int.storage) {
.u64, .i64, .big_int => int.storage.toBigInt(space),
.lazy_align, .lazy_size => |ty| {
if (opt_sema) |sema| try sema.resolveTypeLayout(Type.fromInterned(ty));
const x = switch (int.storage) {
else => unreachable,
.lazy_align => Type.fromInterned(ty).abiAlignment(mod).toByteUnits(0),
.lazy_size => Type.fromInterned(ty).abiSize(mod),
};
return BigIntMutable.init(&space.limbs, x).toConst();
},
},
.enum_tag => |enum_tag| Value.fromInterned(enum_tag.int).toBigIntAdvanced(space, mod, opt_sema),
.opt, .ptr => BigIntMutable.init(
&space.limbs,
(try val.getUnsignedIntAdvanced(mod, opt_sema)).?,
).toConst(),
else => unreachable,
},
};
}
pub fn isFuncBody(val: Value, mod: *Module) bool {
return mod.intern_pool.isFuncBody(val.toIntern());
}
pub fn getFunction(val: Value, mod: *Module) ?InternPool.Key.Func {
return if (val.ip_index != .none) switch (mod.intern_pool.indexToKey(val.toIntern())) {
.func => |x| x,
else => null,
} else null;
}
pub fn getExternFunc(val: Value, mod: *Module) ?InternPool.Key.ExternFunc {
return if (val.ip_index != .none) switch (mod.intern_pool.indexToKey(val.toIntern())) {
.extern_func => |extern_func| extern_func,
else => null,
} else null;
}
pub fn getVariable(val: Value, mod: *Module) ?InternPool.Key.Variable {
return if (val.ip_index != .none) switch (mod.intern_pool.indexToKey(val.toIntern())) {
.variable => |variable| variable,
else => null,
} else null;
}
/// If the value fits in a u64, return it, otherwise null.
/// Asserts not undefined.
pub fn getUnsignedInt(val: Value, mod: *Module) ?u64 {
return getUnsignedIntAdvanced(val, mod, null) catch unreachable;
}
/// If the value fits in a u64, return it, otherwise null.
/// Asserts not undefined.
pub fn getUnsignedIntAdvanced(val: Value, mod: *Module, opt_sema: ?*Sema) !?u64 {
return switch (val.toIntern()) {
.undef => unreachable,
.bool_false => 0,
.bool_true => 1,
else => switch (mod.intern_pool.indexToKey(val.toIntern())) {
.undef => unreachable,
.int => |int| switch (int.storage) {
.big_int => |big_int| big_int.to(u64) catch null,
.u64 => |x| x,
.i64 => |x| std.math.cast(u64, x),
.lazy_align => |ty| if (opt_sema) |sema|
(try Type.fromInterned(ty).abiAlignmentAdvanced(mod, .{ .sema = sema })).scalar.toByteUnits(0)
else
Type.fromInterned(ty).abiAlignment(mod).toByteUnits(0),
.lazy_size => |ty| if (opt_sema) |sema|
(try Type.fromInterned(ty).abiSizeAdvanced(mod, .{ .sema = sema })).scalar
else
Type.fromInterned(ty).abiSize(mod),
},
.ptr => |ptr| switch (ptr.addr) {
.int => |int| Value.fromInterned(int).getUnsignedIntAdvanced(mod, opt_sema),
.elem => |elem| {
const base_addr = (try Value.fromInterned(elem.base).getUnsignedIntAdvanced(mod, opt_sema)) orelse return null;
const elem_ty = Type.fromInterned(mod.intern_pool.typeOf(elem.base)).elemType2(mod);
return base_addr + elem.index * elem_ty.abiSize(mod);
},
.field => |field| {
const base_addr = (try Value.fromInterned(field.base).getUnsignedIntAdvanced(mod, opt_sema)) orelse return null;
const struct_ty = Type.fromInterned(mod.intern_pool.typeOf(field.base)).childType(mod);
if (opt_sema) |sema| try sema.resolveTypeLayout(struct_ty);
return base_addr + struct_ty.structFieldOffset(@as(usize, @intCast(field.index)), mod);
},
else => null,
},
.opt => |opt| switch (opt.val) {
.none => 0,
else => |payload| Value.fromInterned(payload).getUnsignedIntAdvanced(mod, opt_sema),
},
else => null,
},
};
}
/// Asserts the value is an integer and it fits in a u64
pub fn toUnsignedInt(val: Value, mod: *Module) u64 {
return getUnsignedInt(val, mod).?;
}
/// Asserts the value is an integer and it fits in a u64
pub fn toUnsignedIntAdvanced(val: Value, sema: *Sema) !u64 {
return (try getUnsignedIntAdvanced(val, sema.mod, sema)).?;
}
/// Asserts the value is an integer and it fits in a i64
pub fn toSignedInt(val: Value, mod: *Module) i64 {
return switch (val.toIntern()) {
.bool_false => 0,
.bool_true => 1,
else => switch (mod.intern_pool.indexToKey(val.toIntern())) {
.int => |int| switch (int.storage) {
.big_int => |big_int| big_int.to(i64) catch unreachable,
.i64 => |x| x,
.u64 => |x| @intCast(x),
.lazy_align => |ty| @intCast(Type.fromInterned(ty).abiAlignment(mod).toByteUnits(0)),
.lazy_size => |ty| @intCast(Type.fromInterned(ty).abiSize(mod)),
},
else => unreachable,
},
};
}
pub fn toBool(val: Value) bool {
return switch (val.toIntern()) {
.bool_true => true,
.bool_false => false,
else => unreachable,
};
}
fn isDeclRef(val: Value, mod: *Module) bool {
var check = val;
while (true) switch (mod.intern_pool.indexToKey(check.toIntern())) {
.ptr => |ptr| switch (ptr.addr) {
.decl, .mut_decl, .comptime_field, .anon_decl => return true,
.eu_payload, .opt_payload => |base| check = Value.fromInterned(base),
.elem, .field => |base_index| check = Value.fromInterned(base_index.base),
.int => return false,
},
else => return false,
};
}
/// Write a Value's contents to `buffer`.
///
/// Asserts that buffer.len >= ty.abiSize(). The buffer is allowed to extend past
/// the end of the value in memory.
pub fn writeToMemory(val: Value, ty: Type, mod: *Module, buffer: []u8) error{
ReinterpretDeclRef,
IllDefinedMemoryLayout,
Unimplemented,
OutOfMemory,
}!void {
const target = mod.getTarget();
const endian = target.cpu.arch.endian();
if (val.isUndef(mod)) {
const size: usize = @intCast(ty.abiSize(mod));
@memset(buffer[0..size], 0xaa);
return;
}
const ip = &mod.intern_pool;
switch (ty.zigTypeTag(mod)) {
.Void => {},
.Bool => {
buffer[0] = @intFromBool(val.toBool());
},
.Int, .Enum => {
const int_info = ty.intInfo(mod);
const bits = int_info.bits;
const byte_count: u16 = @intCast((@as(u17, bits) + 7) / 8);
var bigint_buffer: BigIntSpace = undefined;
const bigint = val.toBigInt(&bigint_buffer, mod);
bigint.writeTwosComplement(buffer[0..byte_count], endian);
},
.Float => switch (ty.floatBits(target)) {
16 => std.mem.writeInt(u16, buffer[0..2], @as(u16, @bitCast(val.toFloat(f16, mod))), endian),
32 => std.mem.writeInt(u32, buffer[0..4], @as(u32, @bitCast(val.toFloat(f32, mod))), endian),
64 => std.mem.writeInt(u64, buffer[0..8], @as(u64, @bitCast(val.toFloat(f64, mod))), endian),
80 => std.mem.writeInt(u80, buffer[0..10], @as(u80, @bitCast(val.toFloat(f80, mod))), endian),
128 => std.mem.writeInt(u128, buffer[0..16], @as(u128, @bitCast(val.toFloat(f128, mod))), endian),
else => unreachable,
},
.Array => {
const len = ty.arrayLen(mod);
const elem_ty = ty.childType(mod);
const elem_size = @as(usize, @intCast(elem_ty.abiSize(mod)));
var elem_i: usize = 0;
var buf_off: usize = 0;
while (elem_i < len) : (elem_i += 1) {
const elem_val = try val.elemValue(mod, elem_i);
try elem_val.writeToMemory(elem_ty, mod, buffer[buf_off..]);
buf_off += elem_size;
}
},
.Vector => {
// We use byte_count instead of abi_size here, so that any padding bytes
// follow the data bytes, on both big- and little-endian systems.
const byte_count = (@as(usize, @intCast(ty.bitSize(mod))) + 7) / 8;
return writeToPackedMemory(val, ty, mod, buffer[0..byte_count], 0);
},
.Struct => {
const struct_type = mod.typeToStruct(ty) orelse return error.IllDefinedMemoryLayout;
switch (struct_type.layout) {
.Auto => return error.IllDefinedMemoryLayout,
.Extern => for (0..struct_type.field_types.len) |i| {
const off: usize = @intCast(ty.structFieldOffset(i, mod));
const field_val = switch (val.ip_index) {
.none => switch (val.tag()) {
.bytes => {
buffer[off] = val.castTag(.bytes).?.data[i];
continue;
},
.aggregate => val.castTag(.aggregate).?.data[i],
.repeated => val.castTag(.repeated).?.data,
else => unreachable,
},
else => Value.fromInterned(switch (ip.indexToKey(val.toIntern()).aggregate.storage) {
.bytes => |bytes| {
buffer[off] = bytes[i];
continue;
},
.elems => |elems| elems[i],
.repeated_elem => |elem| elem,
}),
};
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[i]);
try writeToMemory(field_val, field_ty, mod, buffer[off..]);
},
.Packed => {
const byte_count = (@as(usize, @intCast(ty.bitSize(mod))) + 7) / 8;
return writeToPackedMemory(val, ty, mod, buffer[0..byte_count], 0);
},
}
},
.ErrorSet => {
const bits = mod.errorSetBits();
const byte_count: u16 = @intCast((@as(u17, bits) + 7) / 8);
const name = switch (ip.indexToKey(val.toIntern())) {
.err => |err| err.name,
.error_union => |error_union| error_union.val.err_name,
else => unreachable,
};
var bigint_buffer: BigIntSpace = undefined;
const bigint = BigIntMutable.init(
&bigint_buffer.limbs,
mod.global_error_set.getIndex(name).?,
).toConst();
bigint.writeTwosComplement(buffer[0..byte_count], endian);
},
.Union => switch (ty.containerLayout(mod)) {
.Auto => return error.IllDefinedMemoryLayout, // Sema is supposed to have emitted a compile error already
.Extern => {
if (val.unionTag(mod)) |union_tag| {
const union_obj = mod.typeToUnion(ty).?;
const field_index = mod.unionTagFieldIndex(union_obj, union_tag).?;
const field_type = Type.fromInterned(union_obj.field_types.get(&mod.intern_pool)[field_index]);
const field_val = try val.fieldValue(mod, field_index);
const byte_count = @as(usize, @intCast(field_type.abiSize(mod)));
return writeToMemory(field_val, field_type, mod, buffer[0..byte_count]);
} else {
const backing_ty = try ty.unionBackingType(mod);
const byte_count: usize = @intCast(backing_ty.abiSize(mod));
return writeToMemory(val.unionValue(mod), backing_ty, mod, buffer[0..byte_count]);
}
},
.Packed => {
const backing_ty = try ty.unionBackingType(mod);
const byte_count: usize = @intCast(backing_ty.abiSize(mod));
return writeToPackedMemory(val, ty, mod, buffer[0..byte_count], 0);
},
},
.Pointer => {
if (ty.isSlice(mod)) return error.IllDefinedMemoryLayout;
if (val.isDeclRef(mod)) return error.ReinterpretDeclRef;
return val.writeToMemory(Type.usize, mod, buffer);
},
.Optional => {
if (!ty.isPtrLikeOptional(mod)) return error.IllDefinedMemoryLayout;
const child = ty.optionalChild(mod);
const opt_val = val.optionalValue(mod);
if (opt_val) |some| {
return some.writeToMemory(child, mod, buffer);
} else {
return writeToMemory(try mod.intValue(Type.usize, 0), Type.usize, mod, buffer);
}
},
else => return error.Unimplemented,
}
}
/// Write a Value's contents to `buffer`.
///
/// Both the start and the end of the provided buffer must be tight, since
/// big-endian packed memory layouts start at the end of the buffer.
pub fn writeToPackedMemory(
val: Value,
ty: Type,
mod: *Module,
buffer: []u8,
bit_offset: usize,
) error{ ReinterpretDeclRef, OutOfMemory }!void {
const ip = &mod.intern_pool;
const target = mod.getTarget();
const endian = target.cpu.arch.endian();
if (val.isUndef(mod)) {
const bit_size = @as(usize, @intCast(ty.bitSize(mod)));
std.mem.writeVarPackedInt(buffer, bit_offset, bit_size, @as(u1, 0), endian);
return;
}
switch (ty.zigTypeTag(mod)) {
.Void => {},
.Bool => {
const byte_index = switch (endian) {
.little => bit_offset / 8,
.big => buffer.len - bit_offset / 8 - 1,
};
if (val.toBool()) {
buffer[byte_index] |= (@as(u8, 1) << @as(u3, @intCast(bit_offset % 8)));
} else {
buffer[byte_index] &= ~(@as(u8, 1) << @as(u3, @intCast(bit_offset % 8)));
}
},
.Int, .Enum => {
if (buffer.len == 0) return;
const bits = ty.intInfo(mod).bits;
if (bits == 0) return;
switch (ip.indexToKey((try val.intFromEnum(ty, mod)).toIntern()).int.storage) {
inline .u64, .i64 => |int| std.mem.writeVarPackedInt(buffer, bit_offset, bits, int, endian),
.big_int => |bigint| bigint.writePackedTwosComplement(buffer, bit_offset, bits, endian),
.lazy_align => |lazy_align| {
const num = Type.fromInterned(lazy_align).abiAlignment(mod).toByteUnits(0);
std.mem.writeVarPackedInt(buffer, bit_offset, bits, num, endian);
},
.lazy_size => |lazy_size| {
const num = Type.fromInterned(lazy_size).abiSize(mod);
std.mem.writeVarPackedInt(buffer, bit_offset, bits, num, endian);
},
}
},
.Float => switch (ty.floatBits(target)) {
16 => std.mem.writePackedInt(u16, buffer, bit_offset, @as(u16, @bitCast(val.toFloat(f16, mod))), endian),
32 => std.mem.writePackedInt(u32, buffer, bit_offset, @as(u32, @bitCast(val.toFloat(f32, mod))), endian),
64 => std.mem.writePackedInt(u64, buffer, bit_offset, @as(u64, @bitCast(val.toFloat(f64, mod))), endian),
80 => std.mem.writePackedInt(u80, buffer, bit_offset, @as(u80, @bitCast(val.toFloat(f80, mod))), endian),
128 => std.mem.writePackedInt(u128, buffer, bit_offset, @as(u128, @bitCast(val.toFloat(f128, mod))), endian),
else => unreachable,
},
.Vector => {
const elem_ty = ty.childType(mod);
const elem_bit_size = @as(u16, @intCast(elem_ty.bitSize(mod)));
const len = @as(usize, @intCast(ty.arrayLen(mod)));
var bits: u16 = 0;
var elem_i: usize = 0;
while (elem_i < len) : (elem_i += 1) {
// On big-endian systems, LLVM reverses the element order of vectors by default
const tgt_elem_i = if (endian == .big) len - elem_i - 1 else elem_i;
const elem_val = try val.elemValue(mod, tgt_elem_i);
try elem_val.writeToPackedMemory(elem_ty, mod, buffer, bit_offset + bits);
bits += elem_bit_size;
}
},
.Struct => {
const struct_type = ip.indexToKey(ty.toIntern()).struct_type;
// Sema is supposed to have emitted a compile error already in the case of Auto,
// and Extern is handled in non-packed writeToMemory.
assert(struct_type.layout == .Packed);
var bits: u16 = 0;
for (0..struct_type.field_types.len) |i| {
const field_val = switch (val.ip_index) {
.none => switch (val.tag()) {
.bytes => unreachable,
.aggregate => val.castTag(.aggregate).?.data[i],
.repeated => val.castTag(.repeated).?.data,
else => unreachable,
},
else => Value.fromInterned(switch (ip.indexToKey(val.toIntern()).aggregate.storage) {
.bytes => unreachable,
.elems => |elems| elems[i],
.repeated_elem => |elem| elem,
}),
};
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[i]);
const field_bits: u16 = @intCast(field_ty.bitSize(mod));
try field_val.writeToPackedMemory(field_ty, mod, buffer, bit_offset + bits);
bits += field_bits;
}
},
.Union => {
const union_obj = mod.typeToUnion(ty).?;
switch (union_obj.getLayout(ip)) {
.Auto, .Extern => unreachable, // Handled in non-packed writeToMemory
.Packed => {
if (val.unionTag(mod)) |union_tag| {
const field_index = mod.unionTagFieldIndex(union_obj, union_tag).?;
const field_type = Type.fromInterned(union_obj.field_types.get(ip)[field_index]);
const field_val = try val.fieldValue(mod, field_index);
return field_val.writeToPackedMemory(field_type, mod, buffer, bit_offset);
} else {
const backing_ty = try ty.unionBackingType(mod);
return val.unionValue(mod).writeToPackedMemory(backing_ty, mod, buffer, bit_offset);
}
},
}
},
.Pointer => {
assert(!ty.isSlice(mod)); // No well defined layout.
if (val.isDeclRef(mod)) return error.ReinterpretDeclRef;
return val.writeToPackedMemory(Type.usize, mod, buffer, bit_offset);
},
.Optional => {
assert(ty.isPtrLikeOptional(mod));
const child = ty.optionalChild(mod);
const opt_val = val.optionalValue(mod);
if (opt_val) |some| {
return some.writeToPackedMemory(child, mod, buffer, bit_offset);
} else {
return writeToPackedMemory(try mod.intValue(Type.usize, 0), Type.usize, mod, buffer, bit_offset);
}
},
else => @panic("TODO implement writeToPackedMemory for more types"),
}
}
/// Load a Value from the contents of `buffer`.
///
/// Asserts that buffer.len >= ty.abiSize(). The buffer is allowed to extend past
/// the end of the value in memory.
pub fn readFromMemory(
ty: Type,
mod: *Module,
buffer: []const u8,
arena: Allocator,
) error{
IllDefinedMemoryLayout,
Unimplemented,
OutOfMemory,
}!Value {
const ip = &mod.intern_pool;
const target = mod.getTarget();
const endian = target.cpu.arch.endian();
switch (ty.zigTypeTag(mod)) {
.Void => return Value.void,
.Bool => {
if (buffer[0] == 0) {
return Value.false;
} else {
return Value.true;
}
},
.Int, .Enum => |ty_tag| {
const int_ty = switch (ty_tag) {
.Int => ty,
.Enum => ty.intTagType(mod),
else => unreachable,
};
const int_info = int_ty.intInfo(mod);
const bits = int_info.bits;
const byte_count: u16 = @intCast((@as(u17, bits) + 7) / 8);
if (bits == 0 or buffer.len == 0) return mod.getCoerced(try mod.intValue(int_ty, 0), ty);
if (bits <= 64) switch (int_info.signedness) { // Fast path for integers <= u64
.signed => {
const val = std.mem.readVarInt(i64, buffer[0..byte_count], endian);
const result = (val << @as(u6, @intCast(64 - bits))) >> @as(u6, @intCast(64 - bits));
return mod.getCoerced(try mod.intValue(int_ty, result), ty);
},
.unsigned => {
const val = std.mem.readVarInt(u64, buffer[0..byte_count], endian);
const result = (val << @as(u6, @intCast(64 - bits))) >> @as(u6, @intCast(64 - bits));
return mod.getCoerced(try mod.intValue(int_ty, result), ty);
},
} else { // Slow path, we have to construct a big-int
const Limb = std.math.big.Limb;
const limb_count = (byte_count + @sizeOf(Limb) - 1) / @sizeOf(Limb);
const limbs_buffer = try arena.alloc(Limb, limb_count);
var bigint = BigIntMutable.init(limbs_buffer, 0);
bigint.readTwosComplement(buffer[0..byte_count], bits, endian, int_info.signedness);
return mod.getCoerced(try mod.intValue_big(int_ty, bigint.toConst()), ty);
}
},
.Float => return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = ty.toIntern(),
.storage = switch (ty.floatBits(target)) {
16 => .{ .f16 = @as(f16, @bitCast(std.mem.readInt(u16, buffer[0..2], endian))) },
32 => .{ .f32 = @as(f32, @bitCast(std.mem.readInt(u32, buffer[0..4], endian))) },
64 => .{ .f64 = @as(f64, @bitCast(std.mem.readInt(u64, buffer[0..8], endian))) },
80 => .{ .f80 = @as(f80, @bitCast(std.mem.readInt(u80, buffer[0..10], endian))) },
128 => .{ .f128 = @as(f128, @bitCast(std.mem.readInt(u128, buffer[0..16], endian))) },
else => unreachable,
},
} }))),
.Array => {
const elem_ty = ty.childType(mod);
const elem_size = elem_ty.abiSize(mod);
const elems = try arena.alloc(InternPool.Index, @as(usize, @intCast(ty.arrayLen(mod))));
var offset: usize = 0;
for (elems) |*elem| {
elem.* = try (try readFromMemory(elem_ty, mod, buffer[offset..], arena)).intern(elem_ty, mod);
offset += @as(usize, @intCast(elem_size));
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = elems },
} })));
},
.Vector => {
// We use byte_count instead of abi_size here, so that any padding bytes
// follow the data bytes, on both big- and little-endian systems.
const byte_count = (@as(usize, @intCast(ty.bitSize(mod))) + 7) / 8;
return readFromPackedMemory(ty, mod, buffer[0..byte_count], 0, arena);
},
.Struct => {
const struct_type = mod.typeToStruct(ty).?;
switch (struct_type.layout) {
.Auto => unreachable, // Sema is supposed to have emitted a compile error already
.Extern => {
const field_types = struct_type.field_types;
const field_vals = try arena.alloc(InternPool.Index, field_types.len);
for (field_vals, 0..) |*field_val, i| {
const field_ty = Type.fromInterned(field_types.get(ip)[i]);
const off: usize = @intCast(ty.structFieldOffset(i, mod));
const sz: usize = @intCast(field_ty.abiSize(mod));
field_val.* = try (try readFromMemory(field_ty, mod, buffer[off..(off + sz)], arena)).intern(field_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = field_vals },
} })));
},
.Packed => {
const byte_count = (@as(usize, @intCast(ty.bitSize(mod))) + 7) / 8;
return readFromPackedMemory(ty, mod, buffer[0..byte_count], 0, arena);
},
}
},
.ErrorSet => {
const bits = mod.errorSetBits();
const byte_count: u16 = @intCast((@as(u17, bits) + 7) / 8);
const int = std.mem.readVarInt(u64, buffer[0..byte_count], endian);
const index = (int << @as(u6, @intCast(64 - bits))) >> @as(u6, @intCast(64 - bits));
const name = mod.global_error_set.keys()[@intCast(index)];
return Value.fromInterned((try mod.intern(.{ .err = .{
.ty = ty.toIntern(),
.name = name,
} })));
},
.Union => switch (ty.containerLayout(mod)) {
.Auto => return error.IllDefinedMemoryLayout,
.Extern => {
const union_size = ty.abiSize(mod);
const array_ty = try mod.arrayType(.{ .len = union_size, .child = .u8_type });
const val = try (try readFromMemory(array_ty, mod, buffer, arena)).intern(array_ty, mod);
return Value.fromInterned((try mod.intern(.{ .un = .{
.ty = ty.toIntern(),
.tag = .none,
.val = val,
} })));
},
.Packed => {
const byte_count = (@as(usize, @intCast(ty.bitSize(mod))) + 7) / 8;
return readFromPackedMemory(ty, mod, buffer[0..byte_count], 0, arena);
},
},
.Pointer => {
assert(!ty.isSlice(mod)); // No well defined layout.
const int_val = try readFromMemory(Type.usize, mod, buffer, arena);
return Value.fromInterned((try mod.intern(.{ .ptr = .{
.ty = ty.toIntern(),
.addr = .{ .int = int_val.toIntern() },
} })));
},
.Optional => {
assert(ty.isPtrLikeOptional(mod));
const child_ty = ty.optionalChild(mod);
const child_val = try readFromMemory(child_ty, mod, buffer, arena);
return Value.fromInterned((try mod.intern(.{ .opt = .{
.ty = ty.toIntern(),
.val = switch (child_val.orderAgainstZero(mod)) {
.lt => unreachable,
.eq => .none,
.gt => child_val.toIntern(),
},
} })));
},
else => return error.Unimplemented,
}
}
/// Load a Value from the contents of `buffer`.
///
/// Both the start and the end of the provided buffer must be tight, since
/// big-endian packed memory layouts start at the end of the buffer.
pub fn readFromPackedMemory(
ty: Type,
mod: *Module,
buffer: []const u8,
bit_offset: usize,
arena: Allocator,
) error{
IllDefinedMemoryLayout,
OutOfMemory,
}!Value {
const ip = &mod.intern_pool;
const target = mod.getTarget();
const endian = target.cpu.arch.endian();
switch (ty.zigTypeTag(mod)) {
.Void => return Value.void,
.Bool => {
const byte = switch (endian) {
.big => buffer[buffer.len - bit_offset / 8 - 1],
.little => buffer[bit_offset / 8],
};
if (((byte >> @as(u3, @intCast(bit_offset % 8))) & 1) == 0) {
return Value.false;
} else {
return Value.true;
}
},
.Int, .Enum => |ty_tag| {
if (buffer.len == 0) return mod.intValue(ty, 0);
const int_info = ty.intInfo(mod);
const bits = int_info.bits;
if (bits == 0) return mod.intValue(ty, 0);
// Fast path for integers <= u64
if (bits <= 64) {
const int_ty = switch (ty_tag) {
.Int => ty,
.Enum => ty.intTagType(mod),
else => unreachable,
};
return mod.getCoerced(switch (int_info.signedness) {
.signed => return mod.intValue(
int_ty,
std.mem.readVarPackedInt(i64, buffer, bit_offset, bits, endian, .signed),
),
.unsigned => return mod.intValue(
int_ty,
std.mem.readVarPackedInt(u64, buffer, bit_offset, bits, endian, .unsigned),
),
}, ty);
}
// Slow path, we have to construct a big-int
const abi_size = @as(usize, @intCast(ty.abiSize(mod)));
const Limb = std.math.big.Limb;
const limb_count = (abi_size + @sizeOf(Limb) - 1) / @sizeOf(Limb);
const limbs_buffer = try arena.alloc(Limb, limb_count);
var bigint = BigIntMutable.init(limbs_buffer, 0);
bigint.readPackedTwosComplement(buffer, bit_offset, bits, endian, int_info.signedness);
return mod.intValue_big(ty, bigint.toConst());
},
.Float => return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = ty.toIntern(),
.storage = switch (ty.floatBits(target)) {
16 => .{ .f16 = @as(f16, @bitCast(std.mem.readPackedInt(u16, buffer, bit_offset, endian))) },
32 => .{ .f32 = @as(f32, @bitCast(std.mem.readPackedInt(u32, buffer, bit_offset, endian))) },
64 => .{ .f64 = @as(f64, @bitCast(std.mem.readPackedInt(u64, buffer, bit_offset, endian))) },
80 => .{ .f80 = @as(f80, @bitCast(std.mem.readPackedInt(u80, buffer, bit_offset, endian))) },
128 => .{ .f128 = @as(f128, @bitCast(std.mem.readPackedInt(u128, buffer, bit_offset, endian))) },
else => unreachable,
},
} }))),
.Vector => {
const elem_ty = ty.childType(mod);
const elems = try arena.alloc(InternPool.Index, @as(usize, @intCast(ty.arrayLen(mod))));
var bits: u16 = 0;
const elem_bit_size = @as(u16, @intCast(elem_ty.bitSize(mod)));
for (elems, 0..) |_, i| {
// On big-endian systems, LLVM reverses the element order of vectors by default
const tgt_elem_i = if (endian == .big) elems.len - i - 1 else i;
elems[tgt_elem_i] = try (try readFromPackedMemory(elem_ty, mod, buffer, bit_offset + bits, arena)).intern(elem_ty, mod);
bits += elem_bit_size;
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = elems },
} })));
},
.Struct => {
// Sema is supposed to have emitted a compile error already for Auto layout structs,
// and Extern is handled by non-packed readFromMemory.
const struct_type = mod.typeToPackedStruct(ty).?;
var bits: u16 = 0;
const field_vals = try arena.alloc(InternPool.Index, struct_type.field_types.len);
for (field_vals, 0..) |*field_val, i| {
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[i]);
const field_bits: u16 = @intCast(field_ty.bitSize(mod));
field_val.* = try (try readFromPackedMemory(field_ty, mod, buffer, bit_offset + bits, arena)).intern(field_ty, mod);
bits += field_bits;
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = field_vals },
} })));
},
.Union => switch (ty.containerLayout(mod)) {
.Auto, .Extern => unreachable, // Handled by non-packed readFromMemory
.Packed => {
const backing_ty = try ty.unionBackingType(mod);
const val = (try readFromPackedMemory(backing_ty, mod, buffer, bit_offset, arena)).toIntern();
return Value.fromInterned((try mod.intern(.{ .un = .{
.ty = ty.toIntern(),
.tag = .none,
.val = val,
} })));
},
},
.Pointer => {
assert(!ty.isSlice(mod)); // No well defined layout.
return readFromPackedMemory(Type.usize, mod, buffer, bit_offset, arena);
},
.Optional => {
assert(ty.isPtrLikeOptional(mod));
const child = ty.optionalChild(mod);
return readFromPackedMemory(child, mod, buffer, bit_offset, arena);
},
else => @panic("TODO implement readFromPackedMemory for more types"),
}
}
/// Asserts that the value is a float or an integer.
pub fn toFloat(val: Value, comptime T: type, mod: *Module) T {
return switch (mod.intern_pool.indexToKey(val.toIntern())) {
.int => |int| switch (int.storage) {
.big_int => |big_int| @floatCast(bigIntToFloat(big_int.limbs, big_int.positive)),
inline .u64, .i64 => |x| {
if (T == f80) {
@panic("TODO we can't lower this properly on non-x86 llvm backend yet");
}
return @floatFromInt(x);
},
.lazy_align => |ty| @floatFromInt(Type.fromInterned(ty).abiAlignment(mod).toByteUnits(0)),
.lazy_size => |ty| @floatFromInt(Type.fromInterned(ty).abiSize(mod)),
},
.float => |float| switch (float.storage) {
inline else => |x| @floatCast(x),
},
else => unreachable,
};
}
/// TODO move this to std lib big int code
fn bigIntToFloat(limbs: []const std.math.big.Limb, positive: bool) f128 {
if (limbs.len == 0) return 0;
const base = std.math.maxInt(std.math.big.Limb) + 1;
var result: f128 = 0;
var i: usize = limbs.len;
while (i != 0) {
i -= 1;
const limb: f128 = @as(f128, @floatFromInt(limbs[i]));
result = @mulAdd(f128, base, result, limb);
}
if (positive) {
return result;
} else {
return -result;
}
}
pub fn clz(val: Value, ty: Type, mod: *Module) u64 {
var bigint_buf: BigIntSpace = undefined;
const bigint = val.toBigInt(&bigint_buf, mod);
return bigint.clz(ty.intInfo(mod).bits);
}
pub fn ctz(val: Value, ty: Type, mod: *Module) u64 {
var bigint_buf: BigIntSpace = undefined;
const bigint = val.toBigInt(&bigint_buf, mod);
return bigint.ctz(ty.intInfo(mod).bits);
}
pub fn popCount(val: Value, ty: Type, mod: *Module) u64 {
var bigint_buf: BigIntSpace = undefined;
const bigint = val.toBigInt(&bigint_buf, mod);
return @as(u64, @intCast(bigint.popCount(ty.intInfo(mod).bits)));
}
pub fn bitReverse(val: Value, ty: Type, mod: *Module, arena: Allocator) !Value {
const info = ty.intInfo(mod);
var buffer: Value.BigIntSpace = undefined;
const operand_bigint = val.toBigInt(&buffer, mod);
const limbs = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(info.bits),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.bitReverse(operand_bigint, info.signedness, info.bits);
return mod.intValue_big(ty, result_bigint.toConst());
}
pub fn byteSwap(val: Value, ty: Type, mod: *Module, arena: Allocator) !Value {
const info = ty.intInfo(mod);
// Bit count must be evenly divisible by 8
assert(info.bits % 8 == 0);
var buffer: Value.BigIntSpace = undefined;
const operand_bigint = val.toBigInt(&buffer, mod);
const limbs = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(info.bits),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.byteSwap(operand_bigint, info.signedness, info.bits / 8);
return mod.intValue_big(ty, result_bigint.toConst());
}
/// Asserts the value is an integer and not undefined.
/// Returns the number of bits the value requires to represent stored in twos complement form.
pub fn intBitCountTwosComp(self: Value, mod: *Module) usize {
var buffer: BigIntSpace = undefined;
const big_int = self.toBigInt(&buffer, mod);
return big_int.bitCountTwosComp();
}
/// Converts an integer or a float to a float. May result in a loss of information.
/// Caller can find out by equality checking the result against the operand.
pub fn floatCast(self: Value, dest_ty: Type, mod: *Module) !Value {
const target = mod.getTarget();
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = dest_ty.toIntern(),
.storage = switch (dest_ty.floatBits(target)) {
16 => .{ .f16 = self.toFloat(f16, mod) },
32 => .{ .f32 = self.toFloat(f32, mod) },
64 => .{ .f64 = self.toFloat(f64, mod) },
80 => .{ .f80 = self.toFloat(f80, mod) },
128 => .{ .f128 = self.toFloat(f128, mod) },
else => unreachable,
},
} })));
}
/// Asserts the value is a float
pub fn floatHasFraction(self: Value, mod: *const Module) bool {
return switch (mod.intern_pool.indexToKey(self.toIntern())) {
.float => |float| switch (float.storage) {
inline else => |x| @rem(x, 1) != 0,
},
else => unreachable,
};
}
pub fn orderAgainstZero(lhs: Value, mod: *Module) std.math.Order {
return orderAgainstZeroAdvanced(lhs, mod, null) catch unreachable;
}
pub fn orderAgainstZeroAdvanced(
lhs: Value,
mod: *Module,
opt_sema: ?*Sema,
) Module.CompileError!std.math.Order {
return switch (lhs.toIntern()) {
.bool_false => .eq,
.bool_true => .gt,
else => switch (mod.intern_pool.indexToKey(lhs.toIntern())) {
.ptr => |ptr| switch (ptr.addr) {
.decl, .mut_decl, .comptime_field => .gt,
.int => |int| Value.fromInterned(int).orderAgainstZeroAdvanced(mod, opt_sema),
.elem => |elem| switch (try Value.fromInterned(elem.base).orderAgainstZeroAdvanced(mod, opt_sema)) {
.lt => unreachable,
.gt => .gt,
.eq => if (elem.index == 0) .eq else .gt,
},
else => unreachable,
},
.int => |int| switch (int.storage) {
.big_int => |big_int| big_int.orderAgainstScalar(0),
inline .u64, .i64 => |x| std.math.order(x, 0),
.lazy_align => .gt, // alignment is never 0
.lazy_size => |ty| return if (Type.fromInterned(ty).hasRuntimeBitsAdvanced(
mod,
false,
if (opt_sema) |sema| .{ .sema = sema } else .eager,
) catch |err| switch (err) {
error.NeedLazy => unreachable,
else => |e| return e,
}) .gt else .eq,
},
.enum_tag => |enum_tag| Value.fromInterned(enum_tag.int).orderAgainstZeroAdvanced(mod, opt_sema),
.float => |float| switch (float.storage) {
inline else => |x| std.math.order(x, 0),
},
else => unreachable,
},
};
}
/// Asserts the value is comparable.
pub fn order(lhs: Value, rhs: Value, mod: *Module) std.math.Order {
return orderAdvanced(lhs, rhs, mod, null) catch unreachable;
}
/// Asserts the value is comparable.
/// If opt_sema is null then this function asserts things are resolved and cannot fail.
pub fn orderAdvanced(lhs: Value, rhs: Value, mod: *Module, opt_sema: ?*Sema) !std.math.Order {
const lhs_against_zero = try lhs.orderAgainstZeroAdvanced(mod, opt_sema);
const rhs_against_zero = try rhs.orderAgainstZeroAdvanced(mod, opt_sema);
switch (lhs_against_zero) {
.lt => if (rhs_against_zero != .lt) return .lt,
.eq => return rhs_against_zero.invert(),
.gt => {},
}
switch (rhs_against_zero) {
.lt => if (lhs_against_zero != .lt) return .gt,
.eq => return lhs_against_zero,
.gt => {},
}
if (lhs.isFloat(mod) or rhs.isFloat(mod)) {
const lhs_f128 = lhs.toFloat(f128, mod);
const rhs_f128 = rhs.toFloat(f128, mod);
return std.math.order(lhs_f128, rhs_f128);
}
var lhs_bigint_space: BigIntSpace = undefined;
var rhs_bigint_space: BigIntSpace = undefined;
const lhs_bigint = try lhs.toBigIntAdvanced(&lhs_bigint_space, mod, opt_sema);
const rhs_bigint = try rhs.toBigIntAdvanced(&rhs_bigint_space, mod, opt_sema);
return lhs_bigint.order(rhs_bigint);
}
/// Asserts the value is comparable. Does not take a type parameter because it supports
/// comparisons between heterogeneous types.
pub fn compareHetero(lhs: Value, op: std.math.CompareOperator, rhs: Value, mod: *Module) bool {
return compareHeteroAdvanced(lhs, op, rhs, mod, null) catch unreachable;
}
pub fn compareHeteroAdvanced(
lhs: Value,
op: std.math.CompareOperator,
rhs: Value,
mod: *Module,
opt_sema: ?*Sema,
) !bool {
if (lhs.pointerDecl(mod)) |lhs_decl| {
if (rhs.pointerDecl(mod)) |rhs_decl| {
switch (op) {
.eq => return lhs_decl == rhs_decl,
.neq => return lhs_decl != rhs_decl,
else => {},
}
} else {
switch (op) {
.eq => return false,
.neq => return true,
else => {},
}
}
} else if (rhs.pointerDecl(mod)) |_| {
switch (op) {
.eq => return false,
.neq => return true,
else => {},
}
}
return (try orderAdvanced(lhs, rhs, mod, opt_sema)).compare(op);
}
/// Asserts the values are comparable. Both operands have type `ty`.
/// For vectors, returns true if comparison is true for ALL elements.
pub fn compareAll(lhs: Value, op: std.math.CompareOperator, rhs: Value, ty: Type, mod: *Module) !bool {
if (ty.zigTypeTag(mod) == .Vector) {
const scalar_ty = ty.scalarType(mod);
for (0..ty.vectorLen(mod)) |i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
if (!compareScalar(lhs_elem, op, rhs_elem, scalar_ty, mod)) {
return false;
}
}
return true;
}
return compareScalar(lhs, op, rhs, ty, mod);
}
/// Asserts the values are comparable. Both operands have type `ty`.
pub fn compareScalar(
lhs: Value,
op: std.math.CompareOperator,
rhs: Value,
ty: Type,
mod: *Module,
) bool {
return switch (op) {
.eq => lhs.eql(rhs, ty, mod),
.neq => !lhs.eql(rhs, ty, mod),
else => compareHetero(lhs, op, rhs, mod),
};
}
/// Asserts the value is comparable.
/// For vectors, returns true if comparison is true for ALL elements.
///
/// Note that `!compareAllWithZero(.eq, ...) != compareAllWithZero(.neq, ...)`
pub fn compareAllWithZero(lhs: Value, op: std.math.CompareOperator, mod: *Module) bool {
return compareAllWithZeroAdvancedExtra(lhs, op, mod, null) catch unreachable;
}
pub fn compareAllWithZeroAdvanced(
lhs: Value,
op: std.math.CompareOperator,
sema: *Sema,
) Module.CompileError!bool {
return compareAllWithZeroAdvancedExtra(lhs, op, sema.mod, sema);
}
pub fn compareAllWithZeroAdvancedExtra(
lhs: Value,
op: std.math.CompareOperator,
mod: *Module,
opt_sema: ?*Sema,
) Module.CompileError!bool {
if (lhs.isInf(mod)) {
switch (op) {
.neq => return true,
.eq => return false,
.gt, .gte => return !lhs.isNegativeInf(mod),
.lt, .lte => return lhs.isNegativeInf(mod),
}
}
switch (mod.intern_pool.indexToKey(lhs.toIntern())) {
.float => |float| switch (float.storage) {
inline else => |x| if (std.math.isNan(x)) return op == .neq,
},
.aggregate => |aggregate| return switch (aggregate.storage) {
.bytes => |bytes| for (bytes) |byte| {
if (!std.math.order(byte, 0).compare(op)) break false;
} else true,
.elems => |elems| for (elems) |elem| {
if (!try Value.fromInterned(elem).compareAllWithZeroAdvancedExtra(op, mod, opt_sema)) break false;
} else true,
.repeated_elem => |elem| Value.fromInterned(elem).compareAllWithZeroAdvancedExtra(op, mod, opt_sema),
},
else => {},
}
return (try orderAgainstZeroAdvanced(lhs, mod, opt_sema)).compare(op);
}
pub fn eql(a: Value, b: Value, ty: Type, mod: *Module) bool {
assert(mod.intern_pool.typeOf(a.toIntern()) == ty.toIntern());
assert(mod.intern_pool.typeOf(b.toIntern()) == ty.toIntern());
return a.toIntern() == b.toIntern();
}
pub fn isComptimeMutablePtr(val: Value, mod: *Module) bool {
return switch (mod.intern_pool.indexToKey(val.toIntern())) {
.slice => |slice| return Value.fromInterned(slice.ptr).isComptimeMutablePtr(mod),
.ptr => |ptr| switch (ptr.addr) {
.mut_decl, .comptime_field => true,
.eu_payload, .opt_payload => |base_ptr| Value.fromInterned(base_ptr).isComptimeMutablePtr(mod),
.elem, .field => |base_index| Value.fromInterned(base_index.base).isComptimeMutablePtr(mod),
else => false,
},
else => false,
};
}
pub fn canMutateComptimeVarState(val: Value, mod: *Module) bool {
return val.isComptimeMutablePtr(mod) or switch (val.toIntern()) {
else => switch (mod.intern_pool.indexToKey(val.toIntern())) {
.error_union => |error_union| switch (error_union.val) {
.err_name => false,
.payload => |payload| Value.fromInterned(payload).canMutateComptimeVarState(mod),
},
.ptr => |ptr| switch (ptr.addr) {
.eu_payload, .opt_payload => |base| Value.fromInterned(base).canMutateComptimeVarState(mod),
.anon_decl => |anon_decl| Value.fromInterned(anon_decl.val).canMutateComptimeVarState(mod),
.elem, .field => |base_index| Value.fromInterned(base_index.base).canMutateComptimeVarState(mod),
else => false,
},
.opt => |opt| switch (opt.val) {
.none => false,
else => |payload| Value.fromInterned(payload).canMutateComptimeVarState(mod),
},
.aggregate => |aggregate| for (aggregate.storage.values()) |elem| {
if (Value.fromInterned(elem).canMutateComptimeVarState(mod)) break true;
} else false,
.un => |un| Value.fromInterned(un.val).canMutateComptimeVarState(mod),
else => false,
},
};
}
/// Gets the decl referenced by this pointer. If the pointer does not point
/// to a decl, or if it points to some part of a decl (like field_ptr or element_ptr),
/// this function returns null.
pub fn pointerDecl(val: Value, mod: *Module) ?InternPool.DeclIndex {
return switch (mod.intern_pool.indexToKey(val.toIntern())) {
.variable => |variable| variable.decl,
.extern_func => |extern_func| extern_func.decl,
.func => |func| func.owner_decl,
.ptr => |ptr| switch (ptr.addr) {
.decl => |decl| decl,
.mut_decl => |mut_decl| mut_decl.decl,
else => null,
},
else => null,
};
}
pub const slice_ptr_index = 0;
pub const slice_len_index = 1;
pub fn slicePtr(val: Value, mod: *Module) Value {
return Value.fromInterned(mod.intern_pool.slicePtr(val.toIntern()));
}
pub fn sliceLen(val: Value, mod: *Module) u64 {
const ip = &mod.intern_pool;
return switch (ip.indexToKey(val.toIntern())) {
.ptr => |ptr| switch (ip.indexToKey(switch (ptr.addr) {
.decl => |decl| mod.declPtr(decl).ty.toIntern(),
.mut_decl => |mut_decl| mod.declPtr(mut_decl.decl).ty.toIntern(),
.anon_decl => |anon_decl| ip.typeOf(anon_decl.val),
.comptime_field => |comptime_field| ip.typeOf(comptime_field),
else => unreachable,
})) {
.array_type => |array_type| array_type.len,
else => 1,
},
.slice => |slice| Value.fromInterned(slice.len).toUnsignedInt(mod),
else => unreachable,
};
}
/// Asserts the value is a single-item pointer to an array, or an array,
/// or an unknown-length pointer, and returns the element value at the index.
pub fn elemValue(val: Value, mod: *Module, index: usize) Allocator.Error!Value {
return (try val.maybeElemValue(mod, index)).?;
}
/// Like `elemValue`, but returns `null` instead of asserting on failure.
pub fn maybeElemValue(val: Value, mod: *Module, index: usize) Allocator.Error!?Value {
return switch (val.ip_index) {
.none => switch (val.tag()) {
.bytes => try mod.intValue(Type.u8, val.castTag(.bytes).?.data[index]),
.repeated => val.castTag(.repeated).?.data,
.aggregate => val.castTag(.aggregate).?.data[index],
.slice => val.castTag(.slice).?.data.ptr.maybeElemValue(mod, index),
else => null,
},
else => switch (mod.intern_pool.indexToKey(val.toIntern())) {
.undef => |ty| Value.fromInterned((try mod.intern(.{
.undef = Type.fromInterned(ty).elemType2(mod).toIntern(),
}))),
.slice => |slice| return Value.fromInterned(slice.ptr).maybeElemValue(mod, index),
.ptr => |ptr| switch (ptr.addr) {
.decl => |decl| mod.declPtr(decl).val.maybeElemValue(mod, index),
.anon_decl => |anon_decl| Value.fromInterned(anon_decl.val).maybeElemValue(mod, index),
.mut_decl => |mut_decl| Value.fromInterned((try mod.declPtr(mut_decl.decl).internValue(mod))).maybeElemValue(mod, index),
.int, .eu_payload => null,
.opt_payload => |base| Value.fromInterned(base).maybeElemValue(mod, index),
.comptime_field => |field_val| Value.fromInterned(field_val).maybeElemValue(mod, index),
.elem => |elem| Value.fromInterned(elem.base).maybeElemValue(mod, index + @as(usize, @intCast(elem.index))),
.field => |field| if (Value.fromInterned(field.base).pointerDecl(mod)) |decl_index| {
const base_decl = mod.declPtr(decl_index);
const field_val = try base_decl.val.fieldValue(mod, @as(usize, @intCast(field.index)));
return field_val.maybeElemValue(mod, index);
} else null,
},
.opt => |opt| Value.fromInterned(opt.val).maybeElemValue(mod, index),
.aggregate => |aggregate| {
const len = mod.intern_pool.aggregateTypeLen(aggregate.ty);
if (index < len) return Value.fromInterned(switch (aggregate.storage) {
.bytes => |bytes| try mod.intern(.{ .int = .{
.ty = .u8_type,
.storage = .{ .u64 = bytes[index] },
} }),
.elems => |elems| elems[index],
.repeated_elem => |elem| elem,
});
assert(index == len);
return Value.fromInterned(mod.intern_pool.indexToKey(aggregate.ty).array_type.sentinel);
},
else => null,
},
};
}
pub fn isLazyAlign(val: Value, mod: *Module) bool {
return switch (mod.intern_pool.indexToKey(val.toIntern())) {
.int => |int| int.storage == .lazy_align,
else => false,
};
}
pub fn isLazySize(val: Value, mod: *Module) bool {
return switch (mod.intern_pool.indexToKey(val.toIntern())) {
.int => |int| int.storage == .lazy_size,
else => false,
};
}
pub fn isPtrToThreadLocal(val: Value, mod: *Module) bool {
const backing_decl = mod.intern_pool.getBackingDecl(val.toIntern()).unwrap() orelse return false;
const variable = mod.declPtr(backing_decl).getOwnedVariable(mod) orelse return false;
return variable.is_threadlocal;
}
// Asserts that the provided start/end are in-bounds.
pub fn sliceArray(
val: Value,
mod: *Module,
arena: Allocator,
start: usize,
end: usize,
) error{OutOfMemory}!Value {
// TODO: write something like getCoercedInts to avoid needing to dupe
return switch (val.ip_index) {
.none => switch (val.tag()) {
.slice => val.castTag(.slice).?.data.ptr.sliceArray(mod, arena, start, end),
.bytes => Tag.bytes.create(arena, val.castTag(.bytes).?.data[start..end]),
.repeated => val,
.aggregate => Tag.aggregate.create(arena, val.castTag(.aggregate).?.data[start..end]),
else => unreachable,
},
else => switch (mod.intern_pool.indexToKey(val.toIntern())) {
.ptr => |ptr| switch (ptr.addr) {
.decl => |decl| try mod.declPtr(decl).val.sliceArray(mod, arena, start, end),
.mut_decl => |mut_decl| Value.fromInterned((try mod.declPtr(mut_decl.decl).internValue(mod)))
.sliceArray(mod, arena, start, end),
.comptime_field => |comptime_field| Value.fromInterned(comptime_field)
.sliceArray(mod, arena, start, end),
.elem => |elem| Value.fromInterned(elem.base)
.sliceArray(mod, arena, start + @as(usize, @intCast(elem.index)), end + @as(usize, @intCast(elem.index))),
else => unreachable,
},
.aggregate => |aggregate| Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = switch (mod.intern_pool.indexToKey(mod.intern_pool.typeOf(val.toIntern()))) {
.array_type => |array_type| try mod.arrayType(.{
.len = @as(u32, @intCast(end - start)),
.child = array_type.child,
.sentinel = if (end == array_type.len) array_type.sentinel else .none,
}),
.vector_type => |vector_type| try mod.vectorType(.{
.len = @as(u32, @intCast(end - start)),
.child = vector_type.child,
}),
else => unreachable,
}.toIntern(),
.storage = switch (aggregate.storage) {
.bytes => .{ .bytes = try arena.dupe(u8, mod.intern_pool.indexToKey(val.toIntern()).aggregate.storage.bytes[start..end]) },
.elems => .{ .elems = try arena.dupe(InternPool.Index, mod.intern_pool.indexToKey(val.toIntern()).aggregate.storage.elems[start..end]) },
.repeated_elem => |elem| .{ .repeated_elem = elem },
},
} }))),
else => unreachable,
},
};
}
pub fn fieldValue(val: Value, mod: *Module, index: usize) !Value {
return switch (val.ip_index) {
.none => switch (val.tag()) {
.aggregate => {
const field_values = val.castTag(.aggregate).?.data;
return field_values[index];
},
.@"union" => {
const payload = val.castTag(.@"union").?.data;
// TODO assert the tag is correct
return payload.val;
},
else => unreachable,
},
else => switch (mod.intern_pool.indexToKey(val.toIntern())) {
.undef => |ty| Value.fromInterned((try mod.intern(.{
.undef = Type.fromInterned(ty).structFieldType(index, mod).toIntern(),
}))),
.aggregate => |aggregate| Value.fromInterned(switch (aggregate.storage) {
.bytes => |bytes| try mod.intern(.{ .int = .{
.ty = .u8_type,
.storage = .{ .u64 = bytes[index] },
} }),
.elems => |elems| elems[index],
.repeated_elem => |elem| elem,
}),
// TODO assert the tag is correct
.un => |un| Value.fromInterned(un.val),
else => unreachable,
},
};
}
pub fn unionTag(val: Value, mod: *Module) ?Value {
if (val.ip_index == .none) return val.castTag(.@"union").?.data.tag;
return switch (mod.intern_pool.indexToKey(val.toIntern())) {
.undef, .enum_tag => val,
.un => |un| if (un.tag != .none) Value.fromInterned(un.tag) else return null,
else => unreachable,
};
}
pub fn unionValue(val: Value, mod: *Module) Value {
if (val.ip_index == .none) return val.castTag(.@"union").?.data.val;
return switch (mod.intern_pool.indexToKey(val.toIntern())) {
.un => |un| Value.fromInterned(un.val),
else => unreachable,
};
}
/// Returns a pointer to the element value at the index.
pub fn elemPtr(
val: Value,
elem_ptr_ty: Type,
index: usize,
mod: *Module,
) Allocator.Error!Value {
const elem_ty = elem_ptr_ty.childType(mod);
const ptr_val = switch (mod.intern_pool.indexToKey(val.toIntern())) {
.slice => |slice| Value.fromInterned(slice.ptr),
else => val,
};
switch (mod.intern_pool.indexToKey(ptr_val.toIntern())) {
.ptr => |ptr| switch (ptr.addr) {
.elem => |elem| if (Type.fromInterned(mod.intern_pool.typeOf(elem.base)).elemType2(mod).eql(elem_ty, mod))
return Value.fromInterned((try mod.intern(.{ .ptr = .{
.ty = elem_ptr_ty.toIntern(),
.addr = .{ .elem = .{
.base = elem.base,
.index = elem.index + index,
} },
} }))),
else => {},
},
else => {},
}
var ptr_ty_key = mod.intern_pool.indexToKey(elem_ptr_ty.toIntern()).ptr_type;
assert(ptr_ty_key.flags.size != .Slice);
ptr_ty_key.flags.size = .Many;
return Value.fromInterned((try mod.intern(.{ .ptr = .{
.ty = elem_ptr_ty.toIntern(),
.addr = .{ .elem = .{
.base = (try mod.getCoerced(ptr_val, try mod.ptrType(ptr_ty_key))).toIntern(),
.index = index,
} },
} })));
}
pub fn isUndef(val: Value, mod: *Module) bool {
return val.ip_index != .none and mod.intern_pool.isUndef(val.toIntern());
}
/// TODO: check for cases such as array that is not marked undef but all the element
/// values are marked undef, or struct that is not marked undef but all fields are marked
/// undef, etc.
pub fn isUndefDeep(val: Value, mod: *Module) bool {
return val.isUndef(mod);
}
/// Returns true if any value contained in `self` is undefined.
pub fn anyUndef(val: Value, mod: *Module) !bool {
if (val.ip_index == .none) return false;
return switch (val.toIntern()) {
.undef => true,
else => switch (mod.intern_pool.indexToKey(val.toIntern())) {
.undef => true,
.simple_value => |v| v == .undefined,
.slice => |slice| for (0..@intCast(Value.fromInterned(slice.len).toUnsignedInt(mod))) |idx| {
if (try (try val.elemValue(mod, idx)).anyUndef(mod)) break true;
} else false,
.aggregate => |aggregate| for (0..aggregate.storage.values().len) |i| {
const elem = mod.intern_pool.indexToKey(val.toIntern()).aggregate.storage.values()[i];
if (try anyUndef(Value.fromInterned(elem), mod)) break true;
} else false,
else => false,
},
};
}
/// Asserts the value is not undefined and not unreachable.
/// C pointers with an integer value of 0 are also considered null.
pub fn isNull(val: Value, mod: *Module) bool {
return switch (val.toIntern()) {
.undef => unreachable,
.unreachable_value => unreachable,
.null_value => true,
else => return switch (mod.intern_pool.indexToKey(val.toIntern())) {
.undef => unreachable,
.ptr => |ptr| switch (ptr.addr) {
.int => {
var buf: BigIntSpace = undefined;
return val.toBigInt(&buf, mod).eqlZero();
},
else => false,
},
.opt => |opt| opt.val == .none,
else => false,
},
};
}
/// Valid only for error (union) types. Asserts the value is not undefined and not unreachable.
pub fn getErrorName(val: Value, mod: *const Module) InternPool.OptionalNullTerminatedString {
return switch (mod.intern_pool.indexToKey(val.toIntern())) {
.err => |err| err.name.toOptional(),
.error_union => |error_union| switch (error_union.val) {
.err_name => |err_name| err_name.toOptional(),
.payload => .none,
},
else => unreachable,
};
}
pub fn getErrorInt(val: Value, mod: *const Module) Module.ErrorInt {
return if (getErrorName(val, mod).unwrap()) |err_name|
@as(Module.ErrorInt, @intCast(mod.global_error_set.getIndex(err_name).?))
else
0;
}
/// Assumes the type is an error union. Returns true if and only if the value is
/// the error union payload, not an error.
pub fn errorUnionIsPayload(val: Value, mod: *const Module) bool {
return mod.intern_pool.indexToKey(val.toIntern()).error_union.val == .payload;
}
/// Value of the optional, null if optional has no payload.
pub fn optionalValue(val: Value, mod: *const Module) ?Value {
return switch (mod.intern_pool.indexToKey(val.toIntern())) {
.opt => |opt| switch (opt.val) {
.none => null,
else => |payload| Value.fromInterned(payload),
},
.ptr => val,
else => unreachable,
};
}
/// Valid for all types. Asserts the value is not undefined.
pub fn isFloat(self: Value, mod: *const Module) bool {
return switch (self.toIntern()) {
.undef => unreachable,
else => switch (mod.intern_pool.indexToKey(self.toIntern())) {
.undef => unreachable,
.float => true,
else => false,
},
};
}
pub fn floatFromInt(val: Value, arena: Allocator, int_ty: Type, float_ty: Type, mod: *Module) !Value {
return floatFromIntAdvanced(val, arena, int_ty, float_ty, mod, null) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
else => unreachable,
};
}
pub fn floatFromIntAdvanced(val: Value, arena: Allocator, int_ty: Type, float_ty: Type, mod: *Module, opt_sema: ?*Sema) !Value {
if (int_ty.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, int_ty.vectorLen(mod));
const scalar_ty = float_ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(mod, i);
scalar.* = try (try floatFromIntScalar(elem_val, scalar_ty, mod, opt_sema)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return floatFromIntScalar(val, float_ty, mod, opt_sema);
}
pub fn floatFromIntScalar(val: Value, float_ty: Type, mod: *Module, opt_sema: ?*Sema) !Value {
return switch (mod.intern_pool.indexToKey(val.toIntern())) {
.undef => try mod.undefValue(float_ty),
.int => |int| switch (int.storage) {
.big_int => |big_int| {
const float = bigIntToFloat(big_int.limbs, big_int.positive);
return mod.floatValue(float_ty, float);
},
inline .u64, .i64 => |x| floatFromIntInner(x, float_ty, mod),
.lazy_align => |ty| if (opt_sema) |sema| {
return floatFromIntInner((try Type.fromInterned(ty).abiAlignmentAdvanced(mod, .{ .sema = sema })).scalar.toByteUnits(0), float_ty, mod);
} else {
return floatFromIntInner(Type.fromInterned(ty).abiAlignment(mod).toByteUnits(0), float_ty, mod);
},
.lazy_size => |ty| if (opt_sema) |sema| {
return floatFromIntInner((try Type.fromInterned(ty).abiSizeAdvanced(mod, .{ .sema = sema })).scalar, float_ty, mod);
} else {
return floatFromIntInner(Type.fromInterned(ty).abiSize(mod), float_ty, mod);
},
},
else => unreachable,
};
}
fn floatFromIntInner(x: anytype, dest_ty: Type, mod: *Module) !Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (dest_ty.floatBits(target)) {
16 => .{ .f16 = @floatFromInt(x) },
32 => .{ .f32 = @floatFromInt(x) },
64 => .{ .f64 = @floatFromInt(x) },
80 => .{ .f80 = @floatFromInt(x) },
128 => .{ .f128 = @floatFromInt(x) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = dest_ty.toIntern(),
.storage = storage,
} })));
}
fn calcLimbLenFloat(scalar: anytype) usize {
if (scalar == 0) {
return 1;
}
const w_value = @abs(scalar);
return @divFloor(@as(std.math.big.Limb, @intFromFloat(std.math.log2(w_value))), @typeInfo(std.math.big.Limb).Int.bits) + 1;
}
pub const OverflowArithmeticResult = struct {
overflow_bit: Value,
wrapped_result: Value,
};
/// Supports (vectors of) integers only; asserts neither operand is undefined.
pub fn intAddSat(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
mod: *Module,
) !Value {
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = try (try intAddSatScalar(lhs_elem, rhs_elem, scalar_ty, arena, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return intAddSatScalar(lhs, rhs, ty, arena, mod);
}
/// Supports integers only; asserts neither operand is undefined.
pub fn intAddSatScalar(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
mod: *Module,
) !Value {
assert(!lhs.isUndef(mod));
assert(!rhs.isUndef(mod));
const info = ty.intInfo(mod);
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, mod);
const rhs_bigint = rhs.toBigInt(&rhs_space, mod);
const limbs = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(info.bits),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.addSat(lhs_bigint, rhs_bigint, info.signedness, info.bits);
return mod.intValue_big(ty, result_bigint.toConst());
}
/// Supports (vectors of) integers only; asserts neither operand is undefined.
pub fn intSubSat(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
mod: *Module,
) !Value {
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = try (try intSubSatScalar(lhs_elem, rhs_elem, scalar_ty, arena, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return intSubSatScalar(lhs, rhs, ty, arena, mod);
}
/// Supports integers only; asserts neither operand is undefined.
pub fn intSubSatScalar(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
mod: *Module,
) !Value {
assert(!lhs.isUndef(mod));
assert(!rhs.isUndef(mod));
const info = ty.intInfo(mod);
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, mod);
const rhs_bigint = rhs.toBigInt(&rhs_space, mod);
const limbs = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(info.bits),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.subSat(lhs_bigint, rhs_bigint, info.signedness, info.bits);
return mod.intValue_big(ty, result_bigint.toConst());
}
pub fn intMulWithOverflow(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
mod: *Module,
) !OverflowArithmeticResult {
if (ty.zigTypeTag(mod) == .Vector) {
const vec_len = ty.vectorLen(mod);
const overflowed_data = try arena.alloc(InternPool.Index, vec_len);
const result_data = try arena.alloc(InternPool.Index, vec_len);
const scalar_ty = ty.scalarType(mod);
for (overflowed_data, result_data, 0..) |*of, *scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
const of_math_result = try intMulWithOverflowScalar(lhs_elem, rhs_elem, scalar_ty, arena, mod);
of.* = try of_math_result.overflow_bit.intern(Type.u1, mod);
scalar.* = try of_math_result.wrapped_result.intern(scalar_ty, mod);
}
return OverflowArithmeticResult{
.overflow_bit = Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = (try mod.vectorType(.{ .len = vec_len, .child = .u1_type })).toIntern(),
.storage = .{ .elems = overflowed_data },
} }))),
.wrapped_result = Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }))),
};
}
return intMulWithOverflowScalar(lhs, rhs, ty, arena, mod);
}
pub fn intMulWithOverflowScalar(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
mod: *Module,
) !OverflowArithmeticResult {
const info = ty.intInfo(mod);
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, mod);
const rhs_bigint = rhs.toBigInt(&rhs_space, mod);
const limbs = try arena.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len + rhs_bigint.limbs.len,
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
const limbs_buffer = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcMulLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len, 1),
);
result_bigint.mul(lhs_bigint, rhs_bigint, limbs_buffer, arena);
const overflowed = !result_bigint.toConst().fitsInTwosComp(info.signedness, info.bits);
if (overflowed) {
result_bigint.truncate(result_bigint.toConst(), info.signedness, info.bits);
}
return OverflowArithmeticResult{
.overflow_bit = try mod.intValue(Type.u1, @intFromBool(overflowed)),
.wrapped_result = try mod.intValue_big(ty, result_bigint.toConst()),
};
}
/// Supports both (vectors of) floats and ints; handles undefined scalars.
pub fn numberMulWrap(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
mod: *Module,
) !Value {
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = try (try numberMulWrapScalar(lhs_elem, rhs_elem, scalar_ty, arena, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return numberMulWrapScalar(lhs, rhs, ty, arena, mod);
}
/// Supports both floats and ints; handles undefined.
pub fn numberMulWrapScalar(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
mod: *Module,
) !Value {
if (lhs.isUndef(mod) or rhs.isUndef(mod)) return Value.undef;
if (ty.zigTypeTag(mod) == .ComptimeInt) {
return intMul(lhs, rhs, ty, undefined, arena, mod);
}
if (ty.isAnyFloat()) {
return floatMul(lhs, rhs, ty, arena, mod);
}
const overflow_result = try intMulWithOverflow(lhs, rhs, ty, arena, mod);
return overflow_result.wrapped_result;
}
/// Supports (vectors of) integers only; asserts neither operand is undefined.
pub fn intMulSat(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
mod: *Module,
) !Value {
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = try (try intMulSatScalar(lhs_elem, rhs_elem, scalar_ty, arena, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return intMulSatScalar(lhs, rhs, ty, arena, mod);
}
/// Supports (vectors of) integers only; asserts neither operand is undefined.
pub fn intMulSatScalar(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
mod: *Module,
) !Value {
assert(!lhs.isUndef(mod));
assert(!rhs.isUndef(mod));
const info = ty.intInfo(mod);
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, mod);
const rhs_bigint = rhs.toBigInt(&rhs_space, mod);
const limbs = try arena.alloc(
std.math.big.Limb,
@max(
// For the saturate
std.math.big.int.calcTwosCompLimbCount(info.bits),
lhs_bigint.limbs.len + rhs_bigint.limbs.len,
),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
const limbs_buffer = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcMulLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len, 1),
);
result_bigint.mul(lhs_bigint, rhs_bigint, limbs_buffer, arena);
result_bigint.saturate(result_bigint.toConst(), info.signedness, info.bits);
return mod.intValue_big(ty, result_bigint.toConst());
}
/// Supports both floats and ints; handles undefined.
pub fn numberMax(lhs: Value, rhs: Value, mod: *Module) Value {
if (lhs.isUndef(mod) or rhs.isUndef(mod)) return undef;
if (lhs.isNan(mod)) return rhs;
if (rhs.isNan(mod)) return lhs;
return switch (order(lhs, rhs, mod)) {
.lt => rhs,
.gt, .eq => lhs,
};
}
/// Supports both floats and ints; handles undefined.
pub fn numberMin(lhs: Value, rhs: Value, mod: *Module) Value {
if (lhs.isUndef(mod) or rhs.isUndef(mod)) return undef;
if (lhs.isNan(mod)) return rhs;
if (rhs.isNan(mod)) return lhs;
return switch (order(lhs, rhs, mod)) {
.lt => lhs,
.gt, .eq => rhs,
};
}
/// operands must be (vectors of) integers; handles undefined scalars.
pub fn bitwiseNot(val: Value, ty: Type, arena: Allocator, mod: *Module) !Value {
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(mod, i);
scalar.* = try (try bitwiseNotScalar(elem_val, scalar_ty, arena, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return bitwiseNotScalar(val, ty, arena, mod);
}
/// operands must be integers; handles undefined.
pub fn bitwiseNotScalar(val: Value, ty: Type, arena: Allocator, mod: *Module) !Value {
if (val.isUndef(mod)) return Value.fromInterned((try mod.intern(.{ .undef = ty.toIntern() })));
if (ty.toIntern() == .bool_type) return makeBool(!val.toBool());
const info = ty.intInfo(mod);
if (info.bits == 0) {
return val;
}
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var val_space: Value.BigIntSpace = undefined;
const val_bigint = val.toBigInt(&val_space, mod);
const limbs = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(info.bits),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.bitNotWrap(val_bigint, info.signedness, info.bits);
return mod.intValue_big(ty, result_bigint.toConst());
}
/// operands must be (vectors of) integers; handles undefined scalars.
pub fn bitwiseAnd(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, mod: *Module) !Value {
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try allocator.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = try (try bitwiseAndScalar(lhs_elem, rhs_elem, scalar_ty, allocator, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return bitwiseAndScalar(lhs, rhs, ty, allocator, mod);
}
/// operands must be integers; handles undefined.
pub fn bitwiseAndScalar(lhs: Value, rhs: Value, ty: Type, arena: Allocator, mod: *Module) !Value {
if (lhs.isUndef(mod) or rhs.isUndef(mod)) return Value.fromInterned((try mod.intern(.{ .undef = ty.toIntern() })));
if (ty.toIntern() == .bool_type) return makeBool(lhs.toBool() and rhs.toBool());
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, mod);
const rhs_bigint = rhs.toBigInt(&rhs_space, mod);
const limbs = try arena.alloc(
std.math.big.Limb,
// + 1 for negatives
@max(lhs_bigint.limbs.len, rhs_bigint.limbs.len) + 1,
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.bitAnd(lhs_bigint, rhs_bigint);
return mod.intValue_big(ty, result_bigint.toConst());
}
/// operands must be (vectors of) integers; handles undefined scalars.
pub fn bitwiseNand(lhs: Value, rhs: Value, ty: Type, arena: Allocator, mod: *Module) !Value {
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = try (try bitwiseNandScalar(lhs_elem, rhs_elem, scalar_ty, arena, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return bitwiseNandScalar(lhs, rhs, ty, arena, mod);
}
/// operands must be integers; handles undefined.
pub fn bitwiseNandScalar(lhs: Value, rhs: Value, ty: Type, arena: Allocator, mod: *Module) !Value {
if (lhs.isUndef(mod) or rhs.isUndef(mod)) return Value.fromInterned((try mod.intern(.{ .undef = ty.toIntern() })));
if (ty.toIntern() == .bool_type) return makeBool(!(lhs.toBool() and rhs.toBool()));
const anded = try bitwiseAnd(lhs, rhs, ty, arena, mod);
const all_ones = if (ty.isSignedInt(mod)) try mod.intValue(ty, -1) else try ty.maxIntScalar(mod, ty);
return bitwiseXor(anded, all_ones, ty, arena, mod);
}
/// operands must be (vectors of) integers; handles undefined scalars.
pub fn bitwiseOr(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, mod: *Module) !Value {
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try allocator.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = try (try bitwiseOrScalar(lhs_elem, rhs_elem, scalar_ty, allocator, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return bitwiseOrScalar(lhs, rhs, ty, allocator, mod);
}
/// operands must be integers; handles undefined.
pub fn bitwiseOrScalar(lhs: Value, rhs: Value, ty: Type, arena: Allocator, mod: *Module) !Value {
if (lhs.isUndef(mod) or rhs.isUndef(mod)) return Value.fromInterned((try mod.intern(.{ .undef = ty.toIntern() })));
if (ty.toIntern() == .bool_type) return makeBool(lhs.toBool() or rhs.toBool());
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, mod);
const rhs_bigint = rhs.toBigInt(&rhs_space, mod);
const limbs = try arena.alloc(
std.math.big.Limb,
@max(lhs_bigint.limbs.len, rhs_bigint.limbs.len),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.bitOr(lhs_bigint, rhs_bigint);
return mod.intValue_big(ty, result_bigint.toConst());
}
/// operands must be (vectors of) integers; handles undefined scalars.
pub fn bitwiseXor(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, mod: *Module) !Value {
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try allocator.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = try (try bitwiseXorScalar(lhs_elem, rhs_elem, scalar_ty, allocator, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return bitwiseXorScalar(lhs, rhs, ty, allocator, mod);
}
/// operands must be integers; handles undefined.
pub fn bitwiseXorScalar(lhs: Value, rhs: Value, ty: Type, arena: Allocator, mod: *Module) !Value {
if (lhs.isUndef(mod) or rhs.isUndef(mod)) return Value.fromInterned((try mod.intern(.{ .undef = ty.toIntern() })));
if (ty.toIntern() == .bool_type) return makeBool(lhs.toBool() != rhs.toBool());
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, mod);
const rhs_bigint = rhs.toBigInt(&rhs_space, mod);
const limbs = try arena.alloc(
std.math.big.Limb,
// + 1 for negatives
@max(lhs_bigint.limbs.len, rhs_bigint.limbs.len) + 1,
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.bitXor(lhs_bigint, rhs_bigint);
return mod.intValue_big(ty, result_bigint.toConst());
}
/// If the value overflowed the type, returns a comptime_int (or vector thereof) instead, setting
/// overflow_idx to the vector index the overflow was at (or 0 for a scalar).
pub fn intDiv(lhs: Value, rhs: Value, ty: Type, overflow_idx: *?usize, allocator: Allocator, mod: *Module) !Value {
var overflow: usize = undefined;
return intDivInner(lhs, rhs, ty, &overflow, allocator, mod) catch |err| switch (err) {
error.Overflow => {
const is_vec = ty.isVector(mod);
overflow_idx.* = if (is_vec) overflow else 0;
const safe_ty = if (is_vec) try mod.vectorType(.{
.len = ty.vectorLen(mod),
.child = .comptime_int_type,
}) else Type.comptime_int;
return intDivInner(lhs, rhs, safe_ty, undefined, allocator, mod) catch |err1| switch (err1) {
error.Overflow => unreachable,
else => |e| return e,
};
},
else => |e| return e,
};
}
fn intDivInner(lhs: Value, rhs: Value, ty: Type, overflow_idx: *usize, allocator: Allocator, mod: *Module) !Value {
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try allocator.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
const val = intDivScalar(lhs_elem, rhs_elem, scalar_ty, allocator, mod) catch |err| switch (err) {
error.Overflow => {
overflow_idx.* = i;
return error.Overflow;
},
else => |e| return e,
};
scalar.* = try val.intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return intDivScalar(lhs, rhs, ty, allocator, mod);
}
pub fn intDivScalar(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, mod: *Module) !Value {
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, mod);
const rhs_bigint = rhs.toBigInt(&rhs_space, mod);
const limbs_q = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len,
);
const limbs_r = try allocator.alloc(
std.math.big.Limb,
rhs_bigint.limbs.len,
);
const limbs_buffer = try allocator.alloc(
std.math.big.Limb,
std.math.big.int.calcDivLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len),
);
var result_q = BigIntMutable{ .limbs = limbs_q, .positive = undefined, .len = undefined };
var result_r = BigIntMutable{ .limbs = limbs_r, .positive = undefined, .len = undefined };
result_q.divTrunc(&result_r, lhs_bigint, rhs_bigint, limbs_buffer);
if (ty.toIntern() != .comptime_int_type) {
const info = ty.intInfo(mod);
if (!result_q.toConst().fitsInTwosComp(info.signedness, info.bits)) {
return error.Overflow;
}
}
return mod.intValue_big(ty, result_q.toConst());
}
pub fn intDivFloor(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, mod: *Module) !Value {
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try allocator.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = try (try intDivFloorScalar(lhs_elem, rhs_elem, scalar_ty, allocator, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return intDivFloorScalar(lhs, rhs, ty, allocator, mod);
}
pub fn intDivFloorScalar(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, mod: *Module) !Value {
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, mod);
const rhs_bigint = rhs.toBigInt(&rhs_space, mod);
const limbs_q = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len,
);
const limbs_r = try allocator.alloc(
std.math.big.Limb,
rhs_bigint.limbs.len,
);
const limbs_buffer = try allocator.alloc(
std.math.big.Limb,
std.math.big.int.calcDivLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len),
);
var result_q = BigIntMutable{ .limbs = limbs_q, .positive = undefined, .len = undefined };
var result_r = BigIntMutable{ .limbs = limbs_r, .positive = undefined, .len = undefined };
result_q.divFloor(&result_r, lhs_bigint, rhs_bigint, limbs_buffer);
return mod.intValue_big(ty, result_q.toConst());
}
pub fn intMod(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, mod: *Module) !Value {
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try allocator.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = try (try intModScalar(lhs_elem, rhs_elem, scalar_ty, allocator, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return intModScalar(lhs, rhs, ty, allocator, mod);
}
pub fn intModScalar(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, mod: *Module) !Value {
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, mod);
const rhs_bigint = rhs.toBigInt(&rhs_space, mod);
const limbs_q = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len,
);
const limbs_r = try allocator.alloc(
std.math.big.Limb,
rhs_bigint.limbs.len,
);
const limbs_buffer = try allocator.alloc(
std.math.big.Limb,
std.math.big.int.calcDivLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len),
);
var result_q = BigIntMutable{ .limbs = limbs_q, .positive = undefined, .len = undefined };
var result_r = BigIntMutable{ .limbs = limbs_r, .positive = undefined, .len = undefined };
result_q.divFloor(&result_r, lhs_bigint, rhs_bigint, limbs_buffer);
return mod.intValue_big(ty, result_r.toConst());
}
/// Returns true if the value is a floating point type and is NaN. Returns false otherwise.
pub fn isNan(val: Value, mod: *const Module) bool {
if (val.ip_index == .none) return false;
return switch (mod.intern_pool.indexToKey(val.toIntern())) {
.float => |float| switch (float.storage) {
inline else => |x| std.math.isNan(x),
},
else => false,
};
}
/// Returns true if the value is a floating point type and is infinite. Returns false otherwise.
pub fn isInf(val: Value, mod: *const Module) bool {
if (val.ip_index == .none) return false;
return switch (mod.intern_pool.indexToKey(val.toIntern())) {
.float => |float| switch (float.storage) {
inline else => |x| std.math.isInf(x),
},
else => false,
};
}
pub fn isNegativeInf(val: Value, mod: *const Module) bool {
if (val.ip_index == .none) return false;
return switch (mod.intern_pool.indexToKey(val.toIntern())) {
.float => |float| switch (float.storage) {
inline else => |x| std.math.isNegativeInf(x),
},
else => false,
};
}
pub fn floatRem(lhs: Value, rhs: Value, float_type: Type, arena: Allocator, mod: *Module) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = try (try floatRemScalar(lhs_elem, rhs_elem, scalar_ty, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return floatRemScalar(lhs, rhs, float_type, mod);
}
pub fn floatRemScalar(lhs: Value, rhs: Value, float_type: Type, mod: *Module) !Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @rem(lhs.toFloat(f16, mod), rhs.toFloat(f16, mod)) },
32 => .{ .f32 = @rem(lhs.toFloat(f32, mod), rhs.toFloat(f32, mod)) },
64 => .{ .f64 = @rem(lhs.toFloat(f64, mod), rhs.toFloat(f64, mod)) },
80 => .{ .f80 = @rem(lhs.toFloat(f80, mod), rhs.toFloat(f80, mod)) },
128 => .{ .f128 = @rem(lhs.toFloat(f128, mod), rhs.toFloat(f128, mod)) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
pub fn floatMod(lhs: Value, rhs: Value, float_type: Type, arena: Allocator, mod: *Module) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = try (try floatModScalar(lhs_elem, rhs_elem, scalar_ty, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return floatModScalar(lhs, rhs, float_type, mod);
}
pub fn floatModScalar(lhs: Value, rhs: Value, float_type: Type, mod: *Module) !Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @mod(lhs.toFloat(f16, mod), rhs.toFloat(f16, mod)) },
32 => .{ .f32 = @mod(lhs.toFloat(f32, mod), rhs.toFloat(f32, mod)) },
64 => .{ .f64 = @mod(lhs.toFloat(f64, mod), rhs.toFloat(f64, mod)) },
80 => .{ .f80 = @mod(lhs.toFloat(f80, mod), rhs.toFloat(f80, mod)) },
128 => .{ .f128 = @mod(lhs.toFloat(f128, mod), rhs.toFloat(f128, mod)) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
/// If the value overflowed the type, returns a comptime_int (or vector thereof) instead, setting
/// overflow_idx to the vector index the overflow was at (or 0 for a scalar).
pub fn intMul(lhs: Value, rhs: Value, ty: Type, overflow_idx: *?usize, allocator: Allocator, mod: *Module) !Value {
var overflow: usize = undefined;
return intMulInner(lhs, rhs, ty, &overflow, allocator, mod) catch |err| switch (err) {
error.Overflow => {
const is_vec = ty.isVector(mod);
overflow_idx.* = if (is_vec) overflow else 0;
const safe_ty = if (is_vec) try mod.vectorType(.{
.len = ty.vectorLen(mod),
.child = .comptime_int_type,
}) else Type.comptime_int;
return intMulInner(lhs, rhs, safe_ty, undefined, allocator, mod) catch |err1| switch (err1) {
error.Overflow => unreachable,
else => |e| return e,
};
},
else => |e| return e,
};
}
fn intMulInner(lhs: Value, rhs: Value, ty: Type, overflow_idx: *usize, allocator: Allocator, mod: *Module) !Value {
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try allocator.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
const val = intMulScalar(lhs_elem, rhs_elem, scalar_ty, allocator, mod) catch |err| switch (err) {
error.Overflow => {
overflow_idx.* = i;
return error.Overflow;
},
else => |e| return e,
};
scalar.* = try val.intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return intMulScalar(lhs, rhs, ty, allocator, mod);
}
pub fn intMulScalar(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, mod: *Module) !Value {
if (ty.toIntern() != .comptime_int_type) {
const res = try intMulWithOverflowScalar(lhs, rhs, ty, allocator, mod);
if (res.overflow_bit.compareAllWithZero(.neq, mod)) return error.Overflow;
return res.wrapped_result;
}
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
var rhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, mod);
const rhs_bigint = rhs.toBigInt(&rhs_space, mod);
const limbs = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len + rhs_bigint.limbs.len,
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
const limbs_buffer = try allocator.alloc(
std.math.big.Limb,
std.math.big.int.calcMulLimbsBufferLen(lhs_bigint.limbs.len, rhs_bigint.limbs.len, 1),
);
defer allocator.free(limbs_buffer);
result_bigint.mul(lhs_bigint, rhs_bigint, limbs_buffer, allocator);
return mod.intValue_big(ty, result_bigint.toConst());
}
pub fn intTrunc(val: Value, ty: Type, allocator: Allocator, signedness: std.builtin.Signedness, bits: u16, mod: *Module) !Value {
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try allocator.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(mod, i);
scalar.* = try (try intTruncScalar(elem_val, scalar_ty, allocator, signedness, bits, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return intTruncScalar(val, ty, allocator, signedness, bits, mod);
}
/// This variant may vectorize on `bits`. Asserts that `bits` is a (vector of) `u16`.
pub fn intTruncBitsAsValue(
val: Value,
ty: Type,
allocator: Allocator,
signedness: std.builtin.Signedness,
bits: Value,
mod: *Module,
) !Value {
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try allocator.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(mod, i);
const bits_elem = try bits.elemValue(mod, i);
scalar.* = try (try intTruncScalar(elem_val, scalar_ty, allocator, signedness, @as(u16, @intCast(bits_elem.toUnsignedInt(mod))), mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return intTruncScalar(val, ty, allocator, signedness, @as(u16, @intCast(bits.toUnsignedInt(mod))), mod);
}
pub fn intTruncScalar(
val: Value,
ty: Type,
allocator: Allocator,
signedness: std.builtin.Signedness,
bits: u16,
mod: *Module,
) !Value {
if (bits == 0) return mod.intValue(ty, 0);
var val_space: Value.BigIntSpace = undefined;
const val_bigint = val.toBigInt(&val_space, mod);
const limbs = try allocator.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(bits),
);
var result_bigint = BigIntMutable{ .limbs = limbs, .positive = undefined, .len = undefined };
result_bigint.truncate(val_bigint, signedness, bits);
return mod.intValue_big(ty, result_bigint.toConst());
}
pub fn shl(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, mod: *Module) !Value {
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try allocator.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = try (try shlScalar(lhs_elem, rhs_elem, scalar_ty, allocator, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return shlScalar(lhs, rhs, ty, allocator, mod);
}
pub fn shlScalar(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, mod: *Module) !Value {
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, mod);
const shift = @as(usize, @intCast(rhs.toUnsignedInt(mod)));
const limbs = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len + (shift / (@sizeOf(std.math.big.Limb) * 8)) + 1,
);
var result_bigint = BigIntMutable{
.limbs = limbs,
.positive = undefined,
.len = undefined,
};
result_bigint.shiftLeft(lhs_bigint, shift);
if (ty.toIntern() != .comptime_int_type) {
const int_info = ty.intInfo(mod);
result_bigint.truncate(result_bigint.toConst(), int_info.signedness, int_info.bits);
}
return mod.intValue_big(ty, result_bigint.toConst());
}
pub fn shlWithOverflow(
lhs: Value,
rhs: Value,
ty: Type,
allocator: Allocator,
mod: *Module,
) !OverflowArithmeticResult {
if (ty.zigTypeTag(mod) == .Vector) {
const vec_len = ty.vectorLen(mod);
const overflowed_data = try allocator.alloc(InternPool.Index, vec_len);
const result_data = try allocator.alloc(InternPool.Index, vec_len);
const scalar_ty = ty.scalarType(mod);
for (overflowed_data, result_data, 0..) |*of, *scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
const of_math_result = try shlWithOverflowScalar(lhs_elem, rhs_elem, scalar_ty, allocator, mod);
of.* = try of_math_result.overflow_bit.intern(Type.u1, mod);
scalar.* = try of_math_result.wrapped_result.intern(scalar_ty, mod);
}
return OverflowArithmeticResult{
.overflow_bit = Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = (try mod.vectorType(.{ .len = vec_len, .child = .u1_type })).toIntern(),
.storage = .{ .elems = overflowed_data },
} }))),
.wrapped_result = Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} }))),
};
}
return shlWithOverflowScalar(lhs, rhs, ty, allocator, mod);
}
pub fn shlWithOverflowScalar(
lhs: Value,
rhs: Value,
ty: Type,
allocator: Allocator,
mod: *Module,
) !OverflowArithmeticResult {
const info = ty.intInfo(mod);
var lhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, mod);
const shift = @as(usize, @intCast(rhs.toUnsignedInt(mod)));
const limbs = try allocator.alloc(
std.math.big.Limb,
lhs_bigint.limbs.len + (shift / (@sizeOf(std.math.big.Limb) * 8)) + 1,
);
var result_bigint = BigIntMutable{
.limbs = limbs,
.positive = undefined,
.len = undefined,
};
result_bigint.shiftLeft(lhs_bigint, shift);
const overflowed = !result_bigint.toConst().fitsInTwosComp(info.signedness, info.bits);
if (overflowed) {
result_bigint.truncate(result_bigint.toConst(), info.signedness, info.bits);
}
return OverflowArithmeticResult{
.overflow_bit = try mod.intValue(Type.u1, @intFromBool(overflowed)),
.wrapped_result = try mod.intValue_big(ty, result_bigint.toConst()),
};
}
pub fn shlSat(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
mod: *Module,
) !Value {
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = try (try shlSatScalar(lhs_elem, rhs_elem, scalar_ty, arena, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return shlSatScalar(lhs, rhs, ty, arena, mod);
}
pub fn shlSatScalar(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
mod: *Module,
) !Value {
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
const info = ty.intInfo(mod);
var lhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, mod);
const shift = @as(usize, @intCast(rhs.toUnsignedInt(mod)));
const limbs = try arena.alloc(
std.math.big.Limb,
std.math.big.int.calcTwosCompLimbCount(info.bits) + 1,
);
var result_bigint = BigIntMutable{
.limbs = limbs,
.positive = undefined,
.len = undefined,
};
result_bigint.shiftLeftSat(lhs_bigint, shift, info.signedness, info.bits);
return mod.intValue_big(ty, result_bigint.toConst());
}
pub fn shlTrunc(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
mod: *Module,
) !Value {
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = try (try shlTruncScalar(lhs_elem, rhs_elem, scalar_ty, arena, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return shlTruncScalar(lhs, rhs, ty, arena, mod);
}
pub fn shlTruncScalar(
lhs: Value,
rhs: Value,
ty: Type,
arena: Allocator,
mod: *Module,
) !Value {
const shifted = try lhs.shl(rhs, ty, arena, mod);
const int_info = ty.intInfo(mod);
const truncated = try shifted.intTrunc(ty, arena, int_info.signedness, int_info.bits, mod);
return truncated;
}
pub fn shr(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, mod: *Module) !Value {
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try allocator.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = try (try shrScalar(lhs_elem, rhs_elem, scalar_ty, allocator, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return shrScalar(lhs, rhs, ty, allocator, mod);
}
pub fn shrScalar(lhs: Value, rhs: Value, ty: Type, allocator: Allocator, mod: *Module) !Value {
// TODO is this a performance issue? maybe we should try the operation without
// resorting to BigInt first.
var lhs_space: Value.BigIntSpace = undefined;
const lhs_bigint = lhs.toBigInt(&lhs_space, mod);
const shift = @as(usize, @intCast(rhs.toUnsignedInt(mod)));
const result_limbs = lhs_bigint.limbs.len -| (shift / (@sizeOf(std.math.big.Limb) * 8));
if (result_limbs == 0) {
// The shift is enough to remove all the bits from the number, which means the
// result is 0 or -1 depending on the sign.
if (lhs_bigint.positive) {
return mod.intValue(ty, 0);
} else {
return mod.intValue(ty, -1);
}
}
const limbs = try allocator.alloc(
std.math.big.Limb,
result_limbs,
);
var result_bigint = BigIntMutable{
.limbs = limbs,
.positive = undefined,
.len = undefined,
};
result_bigint.shiftRight(lhs_bigint, shift);
return mod.intValue_big(ty, result_bigint.toConst());
}
pub fn floatNeg(
val: Value,
float_type: Type,
arena: Allocator,
mod: *Module,
) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(mod, i);
scalar.* = try (try floatNegScalar(elem_val, scalar_ty, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return floatNegScalar(val, float_type, mod);
}
pub fn floatNegScalar(
val: Value,
float_type: Type,
mod: *Module,
) !Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = -val.toFloat(f16, mod) },
32 => .{ .f32 = -val.toFloat(f32, mod) },
64 => .{ .f64 = -val.toFloat(f64, mod) },
80 => .{ .f80 = -val.toFloat(f80, mod) },
128 => .{ .f128 = -val.toFloat(f128, mod) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
pub fn floatAdd(
lhs: Value,
rhs: Value,
float_type: Type,
arena: Allocator,
mod: *Module,
) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = try (try floatAddScalar(lhs_elem, rhs_elem, scalar_ty, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return floatAddScalar(lhs, rhs, float_type, mod);
}
pub fn floatAddScalar(
lhs: Value,
rhs: Value,
float_type: Type,
mod: *Module,
) !Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = lhs.toFloat(f16, mod) + rhs.toFloat(f16, mod) },
32 => .{ .f32 = lhs.toFloat(f32, mod) + rhs.toFloat(f32, mod) },
64 => .{ .f64 = lhs.toFloat(f64, mod) + rhs.toFloat(f64, mod) },
80 => .{ .f80 = lhs.toFloat(f80, mod) + rhs.toFloat(f80, mod) },
128 => .{ .f128 = lhs.toFloat(f128, mod) + rhs.toFloat(f128, mod) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
pub fn floatSub(
lhs: Value,
rhs: Value,
float_type: Type,
arena: Allocator,
mod: *Module,
) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = try (try floatSubScalar(lhs_elem, rhs_elem, scalar_ty, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return floatSubScalar(lhs, rhs, float_type, mod);
}
pub fn floatSubScalar(
lhs: Value,
rhs: Value,
float_type: Type,
mod: *Module,
) !Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = lhs.toFloat(f16, mod) - rhs.toFloat(f16, mod) },
32 => .{ .f32 = lhs.toFloat(f32, mod) - rhs.toFloat(f32, mod) },
64 => .{ .f64 = lhs.toFloat(f64, mod) - rhs.toFloat(f64, mod) },
80 => .{ .f80 = lhs.toFloat(f80, mod) - rhs.toFloat(f80, mod) },
128 => .{ .f128 = lhs.toFloat(f128, mod) - rhs.toFloat(f128, mod) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
pub fn floatDiv(
lhs: Value,
rhs: Value,
float_type: Type,
arena: Allocator,
mod: *Module,
) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = try (try floatDivScalar(lhs_elem, rhs_elem, scalar_ty, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return floatDivScalar(lhs, rhs, float_type, mod);
}
pub fn floatDivScalar(
lhs: Value,
rhs: Value,
float_type: Type,
mod: *Module,
) !Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = lhs.toFloat(f16, mod) / rhs.toFloat(f16, mod) },
32 => .{ .f32 = lhs.toFloat(f32, mod) / rhs.toFloat(f32, mod) },
64 => .{ .f64 = lhs.toFloat(f64, mod) / rhs.toFloat(f64, mod) },
80 => .{ .f80 = lhs.toFloat(f80, mod) / rhs.toFloat(f80, mod) },
128 => .{ .f128 = lhs.toFloat(f128, mod) / rhs.toFloat(f128, mod) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
pub fn floatDivFloor(
lhs: Value,
rhs: Value,
float_type: Type,
arena: Allocator,
mod: *Module,
) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = try (try floatDivFloorScalar(lhs_elem, rhs_elem, scalar_ty, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return floatDivFloorScalar(lhs, rhs, float_type, mod);
}
pub fn floatDivFloorScalar(
lhs: Value,
rhs: Value,
float_type: Type,
mod: *Module,
) !Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @divFloor(lhs.toFloat(f16, mod), rhs.toFloat(f16, mod)) },
32 => .{ .f32 = @divFloor(lhs.toFloat(f32, mod), rhs.toFloat(f32, mod)) },
64 => .{ .f64 = @divFloor(lhs.toFloat(f64, mod), rhs.toFloat(f64, mod)) },
80 => .{ .f80 = @divFloor(lhs.toFloat(f80, mod), rhs.toFloat(f80, mod)) },
128 => .{ .f128 = @divFloor(lhs.toFloat(f128, mod), rhs.toFloat(f128, mod)) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
pub fn floatDivTrunc(
lhs: Value,
rhs: Value,
float_type: Type,
arena: Allocator,
mod: *Module,
) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = try (try floatDivTruncScalar(lhs_elem, rhs_elem, scalar_ty, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return floatDivTruncScalar(lhs, rhs, float_type, mod);
}
pub fn floatDivTruncScalar(
lhs: Value,
rhs: Value,
float_type: Type,
mod: *Module,
) !Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @divTrunc(lhs.toFloat(f16, mod), rhs.toFloat(f16, mod)) },
32 => .{ .f32 = @divTrunc(lhs.toFloat(f32, mod), rhs.toFloat(f32, mod)) },
64 => .{ .f64 = @divTrunc(lhs.toFloat(f64, mod), rhs.toFloat(f64, mod)) },
80 => .{ .f80 = @divTrunc(lhs.toFloat(f80, mod), rhs.toFloat(f80, mod)) },
128 => .{ .f128 = @divTrunc(lhs.toFloat(f128, mod), rhs.toFloat(f128, mod)) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
pub fn floatMul(
lhs: Value,
rhs: Value,
float_type: Type,
arena: Allocator,
mod: *Module,
) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const lhs_elem = try lhs.elemValue(mod, i);
const rhs_elem = try rhs.elemValue(mod, i);
scalar.* = try (try floatMulScalar(lhs_elem, rhs_elem, scalar_ty, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return floatMulScalar(lhs, rhs, float_type, mod);
}
pub fn floatMulScalar(
lhs: Value,
rhs: Value,
float_type: Type,
mod: *Module,
) !Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = lhs.toFloat(f16, mod) * rhs.toFloat(f16, mod) },
32 => .{ .f32 = lhs.toFloat(f32, mod) * rhs.toFloat(f32, mod) },
64 => .{ .f64 = lhs.toFloat(f64, mod) * rhs.toFloat(f64, mod) },
80 => .{ .f80 = lhs.toFloat(f80, mod) * rhs.toFloat(f80, mod) },
128 => .{ .f128 = lhs.toFloat(f128, mod) * rhs.toFloat(f128, mod) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
pub fn sqrt(val: Value, float_type: Type, arena: Allocator, mod: *Module) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(mod, i);
scalar.* = try (try sqrtScalar(elem_val, scalar_ty, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return sqrtScalar(val, float_type, mod);
}
pub fn sqrtScalar(val: Value, float_type: Type, mod: *Module) Allocator.Error!Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @sqrt(val.toFloat(f16, mod)) },
32 => .{ .f32 = @sqrt(val.toFloat(f32, mod)) },
64 => .{ .f64 = @sqrt(val.toFloat(f64, mod)) },
80 => .{ .f80 = @sqrt(val.toFloat(f80, mod)) },
128 => .{ .f128 = @sqrt(val.toFloat(f128, mod)) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
pub fn sin(val: Value, float_type: Type, arena: Allocator, mod: *Module) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(mod, i);
scalar.* = try (try sinScalar(elem_val, scalar_ty, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return sinScalar(val, float_type, mod);
}
pub fn sinScalar(val: Value, float_type: Type, mod: *Module) Allocator.Error!Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @sin(val.toFloat(f16, mod)) },
32 => .{ .f32 = @sin(val.toFloat(f32, mod)) },
64 => .{ .f64 = @sin(val.toFloat(f64, mod)) },
80 => .{ .f80 = @sin(val.toFloat(f80, mod)) },
128 => .{ .f128 = @sin(val.toFloat(f128, mod)) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
pub fn cos(val: Value, float_type: Type, arena: Allocator, mod: *Module) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(mod, i);
scalar.* = try (try cosScalar(elem_val, scalar_ty, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return cosScalar(val, float_type, mod);
}
pub fn cosScalar(val: Value, float_type: Type, mod: *Module) Allocator.Error!Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @cos(val.toFloat(f16, mod)) },
32 => .{ .f32 = @cos(val.toFloat(f32, mod)) },
64 => .{ .f64 = @cos(val.toFloat(f64, mod)) },
80 => .{ .f80 = @cos(val.toFloat(f80, mod)) },
128 => .{ .f128 = @cos(val.toFloat(f128, mod)) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
pub fn tan(val: Value, float_type: Type, arena: Allocator, mod: *Module) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(mod, i);
scalar.* = try (try tanScalar(elem_val, scalar_ty, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return tanScalar(val, float_type, mod);
}
pub fn tanScalar(val: Value, float_type: Type, mod: *Module) Allocator.Error!Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @tan(val.toFloat(f16, mod)) },
32 => .{ .f32 = @tan(val.toFloat(f32, mod)) },
64 => .{ .f64 = @tan(val.toFloat(f64, mod)) },
80 => .{ .f80 = @tan(val.toFloat(f80, mod)) },
128 => .{ .f128 = @tan(val.toFloat(f128, mod)) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
pub fn exp(val: Value, float_type: Type, arena: Allocator, mod: *Module) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(mod, i);
scalar.* = try (try expScalar(elem_val, scalar_ty, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return expScalar(val, float_type, mod);
}
pub fn expScalar(val: Value, float_type: Type, mod: *Module) Allocator.Error!Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @exp(val.toFloat(f16, mod)) },
32 => .{ .f32 = @exp(val.toFloat(f32, mod)) },
64 => .{ .f64 = @exp(val.toFloat(f64, mod)) },
80 => .{ .f80 = @exp(val.toFloat(f80, mod)) },
128 => .{ .f128 = @exp(val.toFloat(f128, mod)) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
pub fn exp2(val: Value, float_type: Type, arena: Allocator, mod: *Module) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(mod, i);
scalar.* = try (try exp2Scalar(elem_val, scalar_ty, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return exp2Scalar(val, float_type, mod);
}
pub fn exp2Scalar(val: Value, float_type: Type, mod: *Module) Allocator.Error!Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @exp2(val.toFloat(f16, mod)) },
32 => .{ .f32 = @exp2(val.toFloat(f32, mod)) },
64 => .{ .f64 = @exp2(val.toFloat(f64, mod)) },
80 => .{ .f80 = @exp2(val.toFloat(f80, mod)) },
128 => .{ .f128 = @exp2(val.toFloat(f128, mod)) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
pub fn log(val: Value, float_type: Type, arena: Allocator, mod: *Module) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(mod, i);
scalar.* = try (try logScalar(elem_val, scalar_ty, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return logScalar(val, float_type, mod);
}
pub fn logScalar(val: Value, float_type: Type, mod: *Module) Allocator.Error!Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @log(val.toFloat(f16, mod)) },
32 => .{ .f32 = @log(val.toFloat(f32, mod)) },
64 => .{ .f64 = @log(val.toFloat(f64, mod)) },
80 => .{ .f80 = @log(val.toFloat(f80, mod)) },
128 => .{ .f128 = @log(val.toFloat(f128, mod)) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
pub fn log2(val: Value, float_type: Type, arena: Allocator, mod: *Module) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(mod, i);
scalar.* = try (try log2Scalar(elem_val, scalar_ty, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return log2Scalar(val, float_type, mod);
}
pub fn log2Scalar(val: Value, float_type: Type, mod: *Module) Allocator.Error!Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @log2(val.toFloat(f16, mod)) },
32 => .{ .f32 = @log2(val.toFloat(f32, mod)) },
64 => .{ .f64 = @log2(val.toFloat(f64, mod)) },
80 => .{ .f80 = @log2(val.toFloat(f80, mod)) },
128 => .{ .f128 = @log2(val.toFloat(f128, mod)) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
pub fn log10(val: Value, float_type: Type, arena: Allocator, mod: *Module) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(mod, i);
scalar.* = try (try log10Scalar(elem_val, scalar_ty, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return log10Scalar(val, float_type, mod);
}
pub fn log10Scalar(val: Value, float_type: Type, mod: *Module) Allocator.Error!Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @log10(val.toFloat(f16, mod)) },
32 => .{ .f32 = @log10(val.toFloat(f32, mod)) },
64 => .{ .f64 = @log10(val.toFloat(f64, mod)) },
80 => .{ .f80 = @log10(val.toFloat(f80, mod)) },
128 => .{ .f128 = @log10(val.toFloat(f128, mod)) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
pub fn abs(val: Value, ty: Type, arena: Allocator, mod: *Module) !Value {
if (ty.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, ty.vectorLen(mod));
const scalar_ty = ty.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(mod, i);
scalar.* = try (try absScalar(elem_val, scalar_ty, mod, arena)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = ty.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return absScalar(val, ty, mod, arena);
}
pub fn absScalar(val: Value, ty: Type, mod: *Module, arena: Allocator) Allocator.Error!Value {
switch (ty.zigTypeTag(mod)) {
.Int => {
var buffer: Value.BigIntSpace = undefined;
var operand_bigint = try val.toBigInt(&buffer, mod).toManaged(arena);
operand_bigint.abs();
return mod.intValue_big(try ty.toUnsigned(mod), operand_bigint.toConst());
},
.ComptimeInt => {
var buffer: Value.BigIntSpace = undefined;
var operand_bigint = try val.toBigInt(&buffer, mod).toManaged(arena);
operand_bigint.abs();
return mod.intValue_big(ty, operand_bigint.toConst());
},
.ComptimeFloat, .Float => {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (ty.floatBits(target)) {
16 => .{ .f16 = @abs(val.toFloat(f16, mod)) },
32 => .{ .f32 = @abs(val.toFloat(f32, mod)) },
64 => .{ .f64 = @abs(val.toFloat(f64, mod)) },
80 => .{ .f80 = @abs(val.toFloat(f80, mod)) },
128 => .{ .f128 = @abs(val.toFloat(f128, mod)) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = ty.toIntern(),
.storage = storage,
} })));
},
else => unreachable,
}
}
pub fn floor(val: Value, float_type: Type, arena: Allocator, mod: *Module) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(mod, i);
scalar.* = try (try floorScalar(elem_val, scalar_ty, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return floorScalar(val, float_type, mod);
}
pub fn floorScalar(val: Value, float_type: Type, mod: *Module) Allocator.Error!Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @floor(val.toFloat(f16, mod)) },
32 => .{ .f32 = @floor(val.toFloat(f32, mod)) },
64 => .{ .f64 = @floor(val.toFloat(f64, mod)) },
80 => .{ .f80 = @floor(val.toFloat(f80, mod)) },
128 => .{ .f128 = @floor(val.toFloat(f128, mod)) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
pub fn ceil(val: Value, float_type: Type, arena: Allocator, mod: *Module) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(mod, i);
scalar.* = try (try ceilScalar(elem_val, scalar_ty, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return ceilScalar(val, float_type, mod);
}
pub fn ceilScalar(val: Value, float_type: Type, mod: *Module) Allocator.Error!Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @ceil(val.toFloat(f16, mod)) },
32 => .{ .f32 = @ceil(val.toFloat(f32, mod)) },
64 => .{ .f64 = @ceil(val.toFloat(f64, mod)) },
80 => .{ .f80 = @ceil(val.toFloat(f80, mod)) },
128 => .{ .f128 = @ceil(val.toFloat(f128, mod)) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
pub fn round(val: Value, float_type: Type, arena: Allocator, mod: *Module) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(mod, i);
scalar.* = try (try roundScalar(elem_val, scalar_ty, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return roundScalar(val, float_type, mod);
}
pub fn roundScalar(val: Value, float_type: Type, mod: *Module) Allocator.Error!Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @round(val.toFloat(f16, mod)) },
32 => .{ .f32 = @round(val.toFloat(f32, mod)) },
64 => .{ .f64 = @round(val.toFloat(f64, mod)) },
80 => .{ .f80 = @round(val.toFloat(f80, mod)) },
128 => .{ .f128 = @round(val.toFloat(f128, mod)) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
pub fn trunc(val: Value, float_type: Type, arena: Allocator, mod: *Module) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const elem_val = try val.elemValue(mod, i);
scalar.* = try (try truncScalar(elem_val, scalar_ty, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return truncScalar(val, float_type, mod);
}
pub fn truncScalar(val: Value, float_type: Type, mod: *Module) Allocator.Error!Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @trunc(val.toFloat(f16, mod)) },
32 => .{ .f32 = @trunc(val.toFloat(f32, mod)) },
64 => .{ .f64 = @trunc(val.toFloat(f64, mod)) },
80 => .{ .f80 = @trunc(val.toFloat(f80, mod)) },
128 => .{ .f128 = @trunc(val.toFloat(f128, mod)) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
pub fn mulAdd(
float_type: Type,
mulend1: Value,
mulend2: Value,
addend: Value,
arena: Allocator,
mod: *Module,
) !Value {
if (float_type.zigTypeTag(mod) == .Vector) {
const result_data = try arena.alloc(InternPool.Index, float_type.vectorLen(mod));
const scalar_ty = float_type.scalarType(mod);
for (result_data, 0..) |*scalar, i| {
const mulend1_elem = try mulend1.elemValue(mod, i);
const mulend2_elem = try mulend2.elemValue(mod, i);
const addend_elem = try addend.elemValue(mod, i);
scalar.* = try (try mulAddScalar(scalar_ty, mulend1_elem, mulend2_elem, addend_elem, mod)).intern(scalar_ty, mod);
}
return Value.fromInterned((try mod.intern(.{ .aggregate = .{
.ty = float_type.toIntern(),
.storage = .{ .elems = result_data },
} })));
}
return mulAddScalar(float_type, mulend1, mulend2, addend, mod);
}
pub fn mulAddScalar(
float_type: Type,
mulend1: Value,
mulend2: Value,
addend: Value,
mod: *Module,
) Allocator.Error!Value {
const target = mod.getTarget();
const storage: InternPool.Key.Float.Storage = switch (float_type.floatBits(target)) {
16 => .{ .f16 = @mulAdd(f16, mulend1.toFloat(f16, mod), mulend2.toFloat(f16, mod), addend.toFloat(f16, mod)) },
32 => .{ .f32 = @mulAdd(f32, mulend1.toFloat(f32, mod), mulend2.toFloat(f32, mod), addend.toFloat(f32, mod)) },
64 => .{ .f64 = @mulAdd(f64, mulend1.toFloat(f64, mod), mulend2.toFloat(f64, mod), addend.toFloat(f64, mod)) },
80 => .{ .f80 = @mulAdd(f80, mulend1.toFloat(f80, mod), mulend2.toFloat(f80, mod), addend.toFloat(f80, mod)) },
128 => .{ .f128 = @mulAdd(f128, mulend1.toFloat(f128, mod), mulend2.toFloat(f128, mod), addend.toFloat(f128, mod)) },
else => unreachable,
};
return Value.fromInterned((try mod.intern(.{ .float = .{
.ty = float_type.toIntern(),
.storage = storage,
} })));
}
/// If the value is represented in-memory as a series of bytes that all
/// have the same value, return that byte value, otherwise null.
pub fn hasRepeatedByteRepr(val: Value, ty: Type, mod: *Module) !?u8 {
const abi_size = std.math.cast(usize, ty.abiSize(mod)) orelse return null;
assert(abi_size >= 1);
const byte_buffer = try mod.gpa.alloc(u8, abi_size);
defer mod.gpa.free(byte_buffer);
writeToMemory(val, ty, mod, byte_buffer) catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
error.ReinterpretDeclRef => return null,
// TODO: The writeToMemory function was originally created for the purpose
// of comptime pointer casting. However, it is now additionally being used
// for checking the actual memory layout that will be generated by machine
// code late in compilation. So, this error handling is too aggressive and
// causes some false negatives, causing less-than-ideal code generation.
error.IllDefinedMemoryLayout => return null,
error.Unimplemented => return null,
};
const first_byte = byte_buffer[0];
for (byte_buffer[1..]) |byte| {
if (byte != first_byte) return null;
}
return first_byte;
}
pub fn isGenericPoison(val: Value) bool {
return val.toIntern() == .generic_poison;
}
/// For an integer (comptime or fixed-width) `val`, returns the comptime-known bounds of the value.
/// If `val` is not undef, the bounds are both `val`.
/// If `val` is undef and has a fixed-width type, the bounds are the bounds of the type.
/// If `val` is undef and is a `comptime_int`, returns null.
pub fn intValueBounds(val: Value, mod: *Module) !?[2]Value {
if (!val.isUndef(mod)) return .{ val, val };
const ty = mod.intern_pool.typeOf(val.toIntern());
if (ty == .comptime_int_type) return null;
return .{
try Type.fromInterned(ty).minInt(mod, Type.fromInterned(ty)),
try Type.fromInterned(ty).maxInt(mod, Type.fromInterned(ty)),
};
}
/// This type is not copyable since it may contain pointers to its inner data.
pub const Payload = struct {
tag: Tag,
pub const Slice = struct {
base: Payload,
data: struct {
ptr: Value,
len: Value,
},
};
pub const Bytes = struct {
base: Payload,
/// Includes the sentinel, if any.
data: []const u8,
};
pub const SubValue = struct {
base: Payload,
data: Value,
};
pub const Aggregate = struct {
base: Payload,
/// Field values. The types are according to the struct or array type.
/// The length is provided here so that copying a Value does not depend on the Type.
data: []Value,
};
pub const Union = struct {
pub const base_tag = Tag.@"union";
base: Payload = .{ .tag = base_tag },
data: Data,
pub const Data = struct {
tag: ?Value,
val: Value,
};
};
};
pub const BigIntSpace = InternPool.Key.Int.Storage.BigIntSpace;
pub const zero_usize: Value = .{ .ip_index = .zero_usize, .legacy = undefined };
pub const zero_u8: Value = .{ .ip_index = .zero_u8, .legacy = undefined };
pub const zero_comptime_int: Value = .{ .ip_index = .zero, .legacy = undefined };
pub const one_comptime_int: Value = .{ .ip_index = .one, .legacy = undefined };
pub const negative_one_comptime_int: Value = .{ .ip_index = .negative_one, .legacy = undefined };
pub const undef: Value = .{ .ip_index = .undef, .legacy = undefined };
pub const @"void": Value = .{ .ip_index = .void_value, .legacy = undefined };
pub const @"null": Value = .{ .ip_index = .null_value, .legacy = undefined };
pub const @"false": Value = .{ .ip_index = .bool_false, .legacy = undefined };
pub const @"true": Value = .{ .ip_index = .bool_true, .legacy = undefined };
pub const @"unreachable": Value = .{ .ip_index = .unreachable_value, .legacy = undefined };
pub const generic_poison: Value = .{ .ip_index = .generic_poison, .legacy = undefined };
pub const generic_poison_type: Value = .{ .ip_index = .generic_poison_type, .legacy = undefined };
pub const empty_struct: Value = .{ .ip_index = .empty_struct, .legacy = undefined };
pub fn makeBool(x: bool) Value {
return if (x) Value.true else Value.false;
}
pub const RuntimeIndex = InternPool.RuntimeIndex;
/// This function is used in the debugger pretty formatters in tools/ to fetch the
/// Tag to Payload mapping to facilitate fancy debug printing for this type.
fn dbHelper(self: *Value, tag_to_payload_map: *map: {
const tags = @typeInfo(Tag).Enum.fields;
var fields: [tags.len]std.builtin.Type.StructField = undefined;
for (&fields, tags) |*field, t| field.* = .{
.name = t.name ++ "",
.type = *@field(Tag, t.name).Type(),
.default_value = null,
.is_comptime = false,
.alignment = 0,
};
break :map @Type(.{ .Struct = .{
.layout = .Extern,
.fields = &fields,
.decls = &.{},
.is_tuple = false,
} });
}) void {
_ = self;
_ = tag_to_payload_map;
}
comptime {
if (builtin.mode == .Debug) {
_ = &dbHelper;
}
}
};