srctree

Andrew Kelley parent d3cf911a 318e9cda 54bbc73f
Merge pull request #18712 from Vexu/std.options

std: make options a struct instance instead of a namespace
CMakeLists.txt added: 231, removed: 4796, total 0
@@ -233,9 +233,6 @@ set(ZIG_STAGE2_SOURCES
"${CMAKE_SOURCE_DIR}/lib/std/dwarf/OP.zig"
"${CMAKE_SOURCE_DIR}/lib/std/dwarf/TAG.zig"
"${CMAKE_SOURCE_DIR}/lib/std/elf.zig"
"${CMAKE_SOURCE_DIR}/lib/std/event.zig"
"${CMAKE_SOURCE_DIR}/lib/std/event/batch.zig"
"${CMAKE_SOURCE_DIR}/lib/std/event/loop.zig"
"${CMAKE_SOURCE_DIR}/lib/std/fifo.zig"
"${CMAKE_SOURCE_DIR}/lib/std/fmt.zig"
"${CMAKE_SOURCE_DIR}/lib/std/fmt/errol.zig"
 
doc/langref.html.in added: 231, removed: 4796, total 0
@@ -10139,7 +10139,7 @@ pub fn main() void {
 
{#header_open|Invalid Error Set Cast#}
<p>At compile-time:</p>
{#code_begin|test_err|test_comptime_invalid_error_set_cast|'error.B' not a member of error set 'error{C,A}'#}
{#code_begin|test_err|test_comptime_invalid_error_set_cast|'error.B' not a member of error set 'error{A,C}'#}
const Set1 = error{
A,
B,
 
lib/std/Build/Step/Compile.zig added: 231, removed: 4796, total 0
@@ -55,7 +55,6 @@ global_base: ?u64 = null,
zig_lib_dir: ?LazyPath,
exec_cmd_args: ?[]const ?[]const u8,
filter: ?[]const u8,
test_evented_io: bool = false,
test_runner: ?[]const u8,
test_server_mode: bool,
wasi_exec_model: ?std.builtin.WasiExecModel = null,
@@ -1307,10 +1306,6 @@ fn make(step: *Step, prog_node: *std.Progress.Node) !void {
try zig_args.append(filter);
}
 
if (self.test_evented_io) {
try zig_args.append("--test-evented-io");
}
 
if (self.test_runner) |test_runner| {
try zig_args.append("--test-runner");
try zig_args.append(b.pathFromRoot(test_runner));
 
lib/std/Build/Step/Run.zig added: 231, removed: 4796, total 0
@@ -1147,19 +1147,14 @@ fn evalZigTest(
test_count = tm_hdr.tests_len;
 
const names_bytes = body[@sizeOf(TmHdr)..][0 .. test_count * @sizeOf(u32)];
const async_frame_lens_bytes = body[@sizeOf(TmHdr) + names_bytes.len ..][0 .. test_count * @sizeOf(u32)];
const expected_panic_msgs_bytes = body[@sizeOf(TmHdr) + names_bytes.len + async_frame_lens_bytes.len ..][0 .. test_count * @sizeOf(u32)];
const string_bytes = body[@sizeOf(TmHdr) + names_bytes.len + async_frame_lens_bytes.len + expected_panic_msgs_bytes.len ..][0..tm_hdr.string_bytes_len];
const expected_panic_msgs_bytes = body[@sizeOf(TmHdr) + names_bytes.len ..][0 .. test_count * @sizeOf(u32)];
const string_bytes = body[@sizeOf(TmHdr) + names_bytes.len + expected_panic_msgs_bytes.len ..][0..tm_hdr.string_bytes_len];
 
const names = std.mem.bytesAsSlice(u32, names_bytes);
const async_frame_lens = std.mem.bytesAsSlice(u32, async_frame_lens_bytes);
const expected_panic_msgs = std.mem.bytesAsSlice(u32, expected_panic_msgs_bytes);
const names_aligned = try arena.alloc(u32, names.len);
for (names_aligned, names) |*dest, src| dest.* = src;
 
const async_frame_lens_aligned = try arena.alloc(u32, async_frame_lens.len);
for (async_frame_lens_aligned, async_frame_lens) |*dest, src| dest.* = src;
 
const expected_panic_msgs_aligned = try arena.alloc(u32, expected_panic_msgs.len);
for (expected_panic_msgs_aligned, expected_panic_msgs) |*dest, src| dest.* = src;
 
@@ -1167,7 +1162,6 @@ fn evalZigTest(
metadata = .{
.string_bytes = try arena.dupe(u8, string_bytes),
.names = names_aligned,
.async_frame_lens = async_frame_lens_aligned,
.expected_panic_msgs = expected_panic_msgs_aligned,
.next_index = 0,
.prog_node = prog_node,
@@ -1237,7 +1231,6 @@ fn evalZigTest(
 
const TestMetadata = struct {
names: []const u32,
async_frame_lens: []const u32,
expected_panic_msgs: []const u32,
string_bytes: []const u8,
next_index: u32,
@@ -1253,7 +1246,6 @@ fn requestNextTest(in: fs.File, metadata: *TestMetadata, sub_prog_node: *?std.Pr
const i = metadata.next_index;
metadata.next_index += 1;
 
if (metadata.async_frame_lens[i] != 0) continue;
if (metadata.expected_panic_msgs[i] != 0) continue;
 
const name = metadata.testName(i);
 
lib/std/builtin.zig added: 231, removed: 4796, total 0
@@ -738,7 +738,6 @@ pub const CompilerBackend = enum(u64) {
pub const TestFn = struct {
name: []const u8,
func: *const fn () anyerror!void,
async_frame_size: ?usize,
};
 
/// This function type is used by the Zig language code generation and
 
lib/std/child_process.zig added: 231, removed: 4796, total 0
@@ -495,7 +495,7 @@ pub const ChildProcess = struct {
}
 
fn spawnPosix(self: *ChildProcess) SpawnError!void {
const pipe_flags = if (io.is_async) os.O.NONBLOCK else 0;
const pipe_flags = 0;
const stdin_pipe = if (self.stdin_behavior == StdIo.Pipe) try os.pipe2(pipe_flags) else undefined;
errdefer if (self.stdin_behavior == StdIo.Pipe) {
destroyPipe(stdin_pipe);
@@ -667,7 +667,6 @@ pub const ChildProcess = struct {
.share_access = windows.FILE_SHARE_READ | windows.FILE_SHARE_WRITE,
.sa = &saAttr,
.creation = windows.OPEN_EXISTING,
.io_mode = .blocking,
}) catch |err| switch (err) {
error.PathAlreadyExists => unreachable, // not possible for "NUL"
error.PipeBusy => unreachable, // not possible for "NUL"
@@ -1493,20 +1492,12 @@ fn forkChildErrReport(fd: i32, err: ChildProcess.SpawnError) noreturn {
const ErrInt = std.meta.Int(.unsigned, @sizeOf(anyerror) * 8);
 
fn writeIntFd(fd: i32, value: ErrInt) !void {
const file = File{
.handle = fd,
.capable_io_mode = .blocking,
.intended_io_mode = .blocking,
};
const file = File{ .handle = fd };
file.writer().writeInt(u64, @intCast(value), .little) catch return error.SystemResources;
}
 
fn readIntFd(fd: i32) !ErrInt {
const file = File{
.handle = fd,
.capable_io_mode = .blocking,
.intended_io_mode = .blocking,
};
const file = File{ .handle = fd };
return @as(ErrInt, @intCast(file.reader().readInt(u64, .little) catch return error.SystemResources));
}
 
 
lib/std/debug.zig added: 231, removed: 4796, total 0
@@ -1141,8 +1141,8 @@ pub fn readElfDebugInfo(
) !ModuleDebugInfo {
nosuspend {
const elf_file = (if (elf_filename) |filename| blk: {
break :blk fs.cwd().openFile(filename, .{ .intended_io_mode = .blocking });
} else fs.openSelfExe(.{ .intended_io_mode = .blocking })) catch |err| switch (err) {
break :blk fs.cwd().openFile(filename, .{});
} else fs.openSelfExe(.{})) catch |err| switch (err) {
error.FileNotFound => return error.MissingDebugInfo,
else => return err,
};
@@ -1452,7 +1452,7 @@ fn readMachODebugInfo(allocator: mem.Allocator, macho_file: File) !ModuleDebugIn
fn printLineFromFileAnyOs(out_stream: anytype, line_info: LineInfo) !void {
// Need this to always block even in async I/O mode, because this could potentially
// be called from e.g. the event loop code crashing.
var f = try fs.cwd().openFile(line_info.file_name, .{ .intended_io_mode = .blocking });
var f = try fs.cwd().openFile(line_info.file_name, .{});
defer f.close();
// TODO fstat and make sure that the file has the correct size
 
@@ -1640,7 +1640,6 @@ const MachoSymbol = struct {
}
};
 
/// `file` is expected to have been opened with .intended_io_mode == .blocking.
/// Takes ownership of file, even on error.
/// TODO it's weird to take ownership even on error, rework this code.
fn mapWholeFile(file: File) ![]align(mem.page_size) const u8 {
@@ -1824,9 +1823,7 @@ pub const DebugInfo = struct {
errdefer self.allocator.destroy(obj_di);
 
const macho_path = mem.sliceTo(std.c._dyld_get_image_name(i), 0);
const macho_file = fs.cwd().openFile(macho_path, .{
.intended_io_mode = .blocking,
}) catch |err| switch (err) {
const macho_file = fs.cwd().openFile(macho_path, .{}) catch |err| switch (err) {
error.FileNotFound => return error.MissingDebugInfo,
else => return err,
};
@@ -2162,7 +2159,7 @@ pub const ModuleDebugInfo = switch (native_os) {
}
 
fn loadOFile(self: *@This(), allocator: mem.Allocator, o_file_path: []const u8) !*OFileInfo {
const o_file = try fs.cwd().openFile(o_file_path, .{ .intended_io_mode = .blocking });
const o_file = try fs.cwd().openFile(o_file_path, .{});
const mapped_mem = try mapWholeFile(o_file);
 
const hdr: *const macho.mach_header_64 = @ptrCast(@alignCast(mapped_mem.ptr));
 
ev/null added: 231, removed: 4796, total 0
@@ -1,23 +0,0 @@
pub const Channel = @import("event/channel.zig").Channel;
pub const Future = @import("event/future.zig").Future;
pub const Group = @import("event/group.zig").Group;
pub const Batch = @import("event/batch.zig").Batch;
pub const Lock = @import("event/lock.zig").Lock;
pub const Locked = @import("event/locked.zig").Locked;
pub const RwLock = @import("event/rwlock.zig").RwLock;
pub const RwLocked = @import("event/rwlocked.zig").RwLocked;
pub const Loop = @import("event/loop.zig").Loop;
pub const WaitGroup = @import("event/wait_group.zig").WaitGroup;
 
test {
_ = @import("event/channel.zig");
_ = @import("event/future.zig");
_ = @import("event/group.zig");
_ = @import("event/batch.zig");
_ = @import("event/lock.zig");
_ = @import("event/locked.zig");
_ = @import("event/rwlock.zig");
_ = @import("event/rwlocked.zig");
_ = @import("event/loop.zig");
_ = @import("event/wait_group.zig");
}
 
ev/null added: 231, removed: 4796, total 0
@@ -1,141 +0,0 @@
const std = @import("../std.zig");
const testing = std.testing;
 
/// Performs multiple async functions in parallel, without heap allocation.
/// Async function frames are managed externally to this abstraction, and
/// passed in via the `add` function. Once all the jobs are added, call `wait`.
/// This API is *not* thread-safe. The object must be accessed from one thread at
/// a time, however, it need not be the same thread.
pub fn Batch(
/// The return value for each job.
/// If a job slot was re-used due to maxed out concurrency, then its result
/// value will be overwritten. The values can be accessed with the `results` field.
comptime Result: type,
/// How many jobs to run in parallel.
comptime max_jobs: comptime_int,
/// Controls whether the `add` and `wait` functions will be async functions.
comptime async_behavior: enum {
/// Observe the value of `std.io.is_async` to decide whether `add`
/// and `wait` will be async functions. Asserts that the jobs do not suspend when
/// `std.options.io_mode == .blocking`. This is a generally safe assumption, and the
/// usual recommended option for this parameter.
auto_async,
 
/// Always uses the `nosuspend` keyword when using `await` on the jobs,
/// making `add` and `wait` non-async functions. Asserts that the jobs do not suspend.
never_async,
 
/// `add` and `wait` use regular `await` keyword, making them async functions.
always_async,
},
) type {
return struct {
jobs: [max_jobs]Job,
next_job_index: usize,
collected_result: CollectedResult,
 
const Job = struct {
frame: ?anyframe->Result,
result: Result,
};
 
const Self = @This();
 
const CollectedResult = switch (@typeInfo(Result)) {
.ErrorUnion => Result,
else => void,
};
 
const async_ok = switch (async_behavior) {
.auto_async => std.io.is_async,
.never_async => false,
.always_async => true,
};
 
pub fn init() Self {
return Self{
.jobs = [1]Job{
.{
.frame = null,
.result = undefined,
},
} ** max_jobs,
.next_job_index = 0,
.collected_result = {},
};
}
 
/// Add a frame to the Batch. If all jobs are in-flight, then this function
/// waits until one completes.
/// This function is *not* thread-safe. It must be called from one thread at
/// a time, however, it need not be the same thread.
/// TODO: "select" language feature to use the next available slot, rather than
/// awaiting the next index.
pub fn add(self: *Self, frame: anyframe->Result) void {
const job = &self.jobs[self.next_job_index];
self.next_job_index = (self.next_job_index + 1) % max_jobs;
if (job.frame) |existing| {
job.result = if (async_ok) await existing else nosuspend await existing;
if (CollectedResult != void) {
job.result catch |err| {
self.collected_result = err;
};
}
}
job.frame = frame;
}
 
/// Wait for all the jobs to complete.
/// Safe to call any number of times.
/// If `Result` is an error union, this function returns the last error that occurred, if any.
/// Unlike the `results` field, the return value of `wait` will report any error that occurred;
/// hitting max parallelism will not compromise the result.
/// This function is *not* thread-safe. It must be called from one thread at
/// a time, however, it need not be the same thread.
pub fn wait(self: *Self) CollectedResult {
for (self.jobs) |*job|
if (job.frame) |f| {
job.result = if (async_ok) await f else nosuspend await f;
if (CollectedResult != void) {
job.result catch |err| {
self.collected_result = err;
};
}
job.frame = null;
};
return self.collected_result;
}
};
}
 
test "std.event.Batch" {
if (true) return error.SkipZigTest;
var count: usize = 0;
var batch = Batch(void, 2, .auto_async).init();
batch.add(&async sleepALittle(&count));
batch.add(&async increaseByTen(&count));
batch.wait();
try testing.expect(count == 11);
 
var another = Batch(anyerror!void, 2, .auto_async).init();
another.add(&async somethingElse());
another.add(&async doSomethingThatFails());
try testing.expectError(error.ItBroke, another.wait());
}
 
fn sleepALittle(count: *usize) void {
std.time.sleep(1 * std.time.ns_per_ms);
_ = @atomicRmw(usize, count, .Add, 1, .SeqCst);
}
 
fn increaseByTen(count: *usize) void {
var i: usize = 0;
while (i < 10) : (i += 1) {
_ = @atomicRmw(usize, count, .Add, 1, .SeqCst);
}
}
 
fn doSomethingThatFails() anyerror!void {}
fn somethingElse() anyerror!void {
return error.ItBroke;
}
 
ev/null added: 231, removed: 4796, total 0
@@ -1,334 +0,0 @@
const std = @import("../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const testing = std.testing;
const Loop = std.event.Loop;
 
/// Many producer, many consumer, thread-safe, runtime configurable buffer size.
/// When buffer is empty, consumers suspend and are resumed by producers.
/// When buffer is full, producers suspend and are resumed by consumers.
pub fn Channel(comptime T: type) type {
return struct {
getters: std.atomic.Queue(GetNode),
or_null_queue: std.atomic.Queue(*std.atomic.Queue(GetNode).Node),
putters: std.atomic.Queue(PutNode),
get_count: usize,
put_count: usize,
dispatch_lock: bool,
need_dispatch: bool,
 
// simple fixed size ring buffer
buffer_nodes: []T,
buffer_index: usize,
buffer_len: usize,
 
const SelfChannel = @This();
const GetNode = struct {
tick_node: *Loop.NextTickNode,
data: Data,
 
const Data = union(enum) {
Normal: Normal,
OrNull: OrNull,
};
 
const Normal = struct {
ptr: *T,
};
 
const OrNull = struct {
ptr: *?T,
or_null: *std.atomic.Queue(*std.atomic.Queue(GetNode).Node).Node,
};
};
const PutNode = struct {
data: T,
tick_node: *Loop.NextTickNode,
};
 
const global_event_loop = Loop.instance orelse
@compileError("std.event.Channel currently only works with event-based I/O");
 
/// Call `deinit` to free resources when done.
/// `buffer` must live until `deinit` is called.
/// For a zero length buffer, use `[0]T{}`.
/// TODO https://github.com/ziglang/zig/issues/2765
pub fn init(self: *SelfChannel, buffer: []T) void {
// The ring buffer implementation only works with power of 2 buffer sizes
// because of relying on subtracting across zero. For example (0 -% 1) % 10 == 5
assert(buffer.len == 0 or @popCount(buffer.len) == 1);
 
self.* = SelfChannel{
.buffer_len = 0,
.buffer_nodes = buffer,
.buffer_index = 0,
.dispatch_lock = false,
.need_dispatch = false,
.getters = std.atomic.Queue(GetNode).init(),
.putters = std.atomic.Queue(PutNode).init(),
.or_null_queue = std.atomic.Queue(*std.atomic.Queue(GetNode).Node).init(),
.get_count = 0,
.put_count = 0,
};
}
 
/// Must be called when all calls to put and get have suspended and no more calls occur.
/// This can be omitted if caller can guarantee that the suspended putters and getters
/// do not need to be run to completion. Note that this may leave awaiters hanging.
pub fn deinit(self: *SelfChannel) void {
while (self.getters.get()) |get_node| {
resume get_node.data.tick_node.data;
}
while (self.putters.get()) |put_node| {
resume put_node.data.tick_node.data;
}
self.* = undefined;
}
 
/// puts a data item in the channel. The function returns when the value has been added to the
/// buffer, or in the case of a zero size buffer, when the item has been retrieved by a getter.
/// Or when the channel is destroyed.
pub fn put(self: *SelfChannel, data: T) void {
var my_tick_node = Loop.NextTickNode{ .data = @frame() };
var queue_node = std.atomic.Queue(PutNode).Node{
.data = PutNode{
.tick_node = &my_tick_node,
.data = data,
},
};
 
suspend {
self.putters.put(&queue_node);
_ = @atomicRmw(usize, &self.put_count, .Add, 1, .SeqCst);
 
self.dispatch();
}
}
 
/// await this function to get an item from the channel. If the buffer is empty, the frame will
/// complete when the next item is put in the channel.
pub fn get(self: *SelfChannel) callconv(.Async) T {
// TODO https://github.com/ziglang/zig/issues/2765
var result: T = undefined;
var my_tick_node = Loop.NextTickNode{ .data = @frame() };
var queue_node = std.atomic.Queue(GetNode).Node{
.data = GetNode{
.tick_node = &my_tick_node,
.data = GetNode.Data{
.Normal = GetNode.Normal{ .ptr = &result },
},
},
};
 
suspend {
self.getters.put(&queue_node);
_ = @atomicRmw(usize, &self.get_count, .Add, 1, .SeqCst);
 
self.dispatch();
}
return result;
}
 
//pub async fn select(comptime EnumUnion: type, channels: ...) EnumUnion {
// assert(@memberCount(EnumUnion) == channels.len); // enum union and channels mismatch
// assert(channels.len != 0); // enum unions cannot have 0 fields
// if (channels.len == 1) {
// const result = await (async channels[0].get() catch unreachable);
// return @unionInit(EnumUnion, @memberName(EnumUnion, 0), result);
// }
//}
 
/// Get an item from the channel. If the buffer is empty and there are no
/// puts waiting, this returns `null`.
pub fn getOrNull(self: *SelfChannel) ?T {
// TODO integrate this function with named return values
// so we can get rid of this extra result copy
var result: ?T = null;
var my_tick_node = Loop.NextTickNode{ .data = @frame() };
var or_null_node = std.atomic.Queue(*std.atomic.Queue(GetNode).Node).Node{ .data = undefined };
var queue_node = std.atomic.Queue(GetNode).Node{
.data = GetNode{
.tick_node = &my_tick_node,
.data = GetNode.Data{
.OrNull = GetNode.OrNull{
.ptr = &result,
.or_null = &or_null_node,
},
},
},
};
or_null_node.data = &queue_node;
 
suspend {
self.getters.put(&queue_node);
_ = @atomicRmw(usize, &self.get_count, .Add, 1, .SeqCst);
self.or_null_queue.put(&or_null_node);
 
self.dispatch();
}
return result;
}
 
fn dispatch(self: *SelfChannel) void {
// set the "need dispatch" flag
@atomicStore(bool, &self.need_dispatch, true, .SeqCst);
 
lock: while (true) {
// set the lock flag
if (@atomicRmw(bool, &self.dispatch_lock, .Xchg, true, .SeqCst)) return;
 
// clear the need_dispatch flag since we're about to do it
@atomicStore(bool, &self.need_dispatch, false, .SeqCst);
 
while (true) {
one_dispatch: {
// later we correct these extra subtractions
var get_count = @atomicRmw(usize, &self.get_count, .Sub, 1, .SeqCst);
var put_count = @atomicRmw(usize, &self.put_count, .Sub, 1, .SeqCst);
 
// transfer self.buffer to self.getters
while (self.buffer_len != 0) {
if (get_count == 0) break :one_dispatch;
 
const get_node = &self.getters.get().?.data;
switch (get_node.data) {
GetNode.Data.Normal => |info| {
info.ptr.* = self.buffer_nodes[(self.buffer_index -% self.buffer_len) % self.buffer_nodes.len];
},
GetNode.Data.OrNull => |info| {
_ = self.or_null_queue.remove(info.or_null);
info.ptr.* = self.buffer_nodes[(self.buffer_index -% self.buffer_len) % self.buffer_nodes.len];
},
}
global_event_loop.onNextTick(get_node.tick_node);
self.buffer_len -= 1;
 
get_count = @atomicRmw(usize, &self.get_count, .Sub, 1, .SeqCst);
}
 
// direct transfer self.putters to self.getters
while (get_count != 0 and put_count != 0) {
const get_node = &self.getters.get().?.data;
const put_node = &self.putters.get().?.data;
 
switch (get_node.data) {
GetNode.Data.Normal => |info| {
info.ptr.* = put_node.data;
},
GetNode.Data.OrNull => |info| {
_ = self.or_null_queue.remove(info.or_null);
info.ptr.* = put_node.data;
},
}
global_event_loop.onNextTick(get_node.tick_node);
global_event_loop.onNextTick(put_node.tick_node);
 
get_count = @atomicRmw(usize, &self.get_count, .Sub, 1, .SeqCst);
put_count = @atomicRmw(usize, &self.put_count, .Sub, 1, .SeqCst);
}
 
// transfer self.putters to self.buffer
while (self.buffer_len != self.buffer_nodes.len and put_count != 0) {
const put_node = &self.putters.get().?.data;
 
self.buffer_nodes[self.buffer_index % self.buffer_nodes.len] = put_node.data;
global_event_loop.onNextTick(put_node.tick_node);
self.buffer_index +%= 1;
self.buffer_len += 1;
 
put_count = @atomicRmw(usize, &self.put_count, .Sub, 1, .SeqCst);
}
}
 
// undo the extra subtractions
_ = @atomicRmw(usize, &self.get_count, .Add, 1, .SeqCst);
_ = @atomicRmw(usize, &self.put_count, .Add, 1, .SeqCst);
 
// All the "get or null" functions should resume now.
var remove_count: usize = 0;
while (self.or_null_queue.get()) |or_null_node| {
remove_count += @intFromBool(self.getters.remove(or_null_node.data));
global_event_loop.onNextTick(or_null_node.data.data.tick_node);
}
if (remove_count != 0) {
_ = @atomicRmw(usize, &self.get_count, .Sub, remove_count, .SeqCst);
}
 
// clear need-dispatch flag
if (@atomicRmw(bool, &self.need_dispatch, .Xchg, false, .SeqCst)) continue;
 
assert(@atomicRmw(bool, &self.dispatch_lock, .Xchg, false, .SeqCst));
 
// we have to check again now that we unlocked
if (@atomicLoad(bool, &self.need_dispatch, .SeqCst)) continue :lock;
 
return;
}
}
}
};
}
 
test "std.event.Channel" {
if (!std.io.is_async) return error.SkipZigTest;
 
// https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
 
// https://github.com/ziglang/zig/issues/3251
if (builtin.os.tag == .freebsd) return error.SkipZigTest;
 
var channel: Channel(i32) = undefined;
channel.init(&[0]i32{});
defer channel.deinit();
 
var handle = async testChannelGetter(&channel);
var putter = async testChannelPutter(&channel);
 
await handle;
await putter;
}
 
test "std.event.Channel wraparound" {
 
// TODO provide a way to run tests in evented I/O mode
if (!std.io.is_async) return error.SkipZigTest;
 
const channel_size = 2;
 
var buf: [channel_size]i32 = undefined;
var channel: Channel(i32) = undefined;
channel.init(&buf);
defer channel.deinit();
 
// add items to channel and pull them out until
// the buffer wraps around, make sure it doesn't crash.
channel.put(5);
try testing.expectEqual(@as(i32, 5), channel.get());
channel.put(6);
try testing.expectEqual(@as(i32, 6), channel.get());
channel.put(7);
try testing.expectEqual(@as(i32, 7), channel.get());
}
fn testChannelGetter(channel: *Channel(i32)) callconv(.Async) void {
const value1 = channel.get();
try testing.expect(value1 == 1234);
 
const value2 = channel.get();
try testing.expect(value2 == 4567);
 
const value3 = channel.getOrNull();
try testing.expect(value3 == null);
 
var last_put = async testPut(channel, 4444);
const value4 = channel.getOrNull();
try testing.expect(value4.? == 4444);
await last_put;
}
fn testChannelPutter(channel: *Channel(i32)) callconv(.Async) void {
channel.put(1234);
channel.put(4567);
}
fn testPut(channel: *Channel(i32), value: i32) callconv(.Async) void {
channel.put(value);
}
 
ev/null added: 231, removed: 4796, total 0
@@ -1,115 +0,0 @@
const std = @import("../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const testing = std.testing;
const Lock = std.event.Lock;
 
/// This is a value that starts out unavailable, until resolve() is called.
/// While it is unavailable, functions suspend when they try to get() it,
/// and then are resumed when resolve() is called.
/// At this point the value remains forever available, and another resolve() is not allowed.
pub fn Future(comptime T: type) type {
return struct {
lock: Lock,
data: T,
available: Available,
 
const Available = enum(u8) {
NotStarted,
Started,
Finished,
};
 
const Self = @This();
const Queue = std.atomic.Queue(anyframe);
 
pub fn init() Self {
return Self{
.lock = Lock.initLocked(),
.available = .NotStarted,
.data = undefined,
};
}
 
/// Obtain the value. If it's not available, wait until it becomes
/// available.
/// Thread-safe.
pub fn get(self: *Self) callconv(.Async) *T {
if (@atomicLoad(Available, &self.available, .SeqCst) == .Finished) {
return &self.data;
}
const held = self.lock.acquire();
held.release();
 
return &self.data;
}
 
/// Gets the data without waiting for it. If it's available, a pointer is
/// returned. Otherwise, null is returned.
pub fn getOrNull(self: *Self) ?*T {
if (@atomicLoad(Available, &self.available, .SeqCst) == .Finished) {
return &self.data;
} else {
return null;
}
}
 
/// If someone else has started working on the data, wait for them to complete
/// and return a pointer to the data. Otherwise, return null, and the caller
/// should start working on the data.
/// It's not required to call start() before resolve() but it can be useful since
/// this method is thread-safe.
pub fn start(self: *Self) callconv(.Async) ?*T {
const state = @cmpxchgStrong(Available, &self.available, .NotStarted, .Started, .SeqCst, .SeqCst) orelse return null;
switch (state) {
.Started => {
const held = self.lock.acquire();
held.release();
return &self.data;
},
.Finished => return &self.data,
else => unreachable,
}
}
 
/// Make the data become available. May be called only once.
/// Before calling this, modify the `data` property.
pub fn resolve(self: *Self) void {
const prev = @atomicRmw(Available, &self.available, .Xchg, .Finished, .SeqCst);
assert(prev != .Finished); // resolve() called twice
Lock.Held.release(Lock.Held{ .lock = &self.lock });
}
};
}
 
test "std.event.Future" {
// https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
// https://github.com/ziglang/zig/issues/3251
if (builtin.os.tag == .freebsd) return error.SkipZigTest;
// TODO provide a way to run tests in evented I/O mode
if (!std.io.is_async) return error.SkipZigTest;
 
testFuture();
}
 
fn testFuture() void {
var future = Future(i32).init();
 
var a = async waitOnFuture(&future);
var b = async waitOnFuture(&future);
resolveFuture(&future);
 
const result = (await a) + (await b);
 
try testing.expect(result == 12);
}
 
fn waitOnFuture(future: *Future(i32)) i32 {
return future.get().*;
}
 
fn resolveFuture(future: *Future(i32)) void {
future.data = 6;
future.resolve();
}
 
ev/null added: 231, removed: 4796, total 0
@@ -1,160 +0,0 @@
const std = @import("../std.zig");
const builtin = @import("builtin");
const Lock = std.event.Lock;
const testing = std.testing;
const Allocator = std.mem.Allocator;
 
/// ReturnType must be `void` or `E!void`
/// TODO This API was created back with the old design of async/await, when calling any
/// async function required an allocator. There is an ongoing experiment to transition
/// all uses of this API to the simpler and more resource-aware `std.event.Batch` API.
/// If the transition goes well, all usages of `Group` will be gone, and this API
/// will be deleted.
pub fn Group(comptime ReturnType: type) type {
return struct {
frame_stack: Stack,
alloc_stack: AllocStack,
lock: Lock,
allocator: Allocator,
 
const Self = @This();
 
const Error = switch (@typeInfo(ReturnType)) {
.ErrorUnion => |payload| payload.error_set,
else => void,
};
const Stack = std.atomic.Stack(anyframe->ReturnType);
const AllocStack = std.atomic.Stack(Node);
 
pub const Node = struct {
bytes: []const u8 = &[0]u8{},
handle: anyframe->ReturnType,
};
 
pub fn init(allocator: Allocator) Self {
return Self{
.frame_stack = Stack.init(),
.alloc_stack = AllocStack.init(),
.lock = .{},
.allocator = allocator,
};
}
 
/// Add a frame to the group. Thread-safe.
pub fn add(self: *Self, handle: anyframe->ReturnType) (error{OutOfMemory}!void) {
const node = try self.allocator.create(AllocStack.Node);
node.* = AllocStack.Node{
.next = undefined,
.data = Node{
.handle = handle,
},
};
self.alloc_stack.push(node);
}
 
/// Add a node to the group. Thread-safe. Cannot fail.
/// `node.data` should be the frame handle to add to the group.
/// The node's memory should be in the function frame of
/// the handle that is in the node, or somewhere guaranteed to live
/// at least as long.
pub fn addNode(self: *Self, node: *Stack.Node) void {
self.frame_stack.push(node);
}
 
/// This is equivalent to adding a frame to the group but the memory of its frame is
/// allocated by the group and freed by `wait`.
/// `func` must be async and have return type `ReturnType`.
/// Thread-safe.
pub fn call(self: *Self, comptime func: anytype, args: anytype) error{OutOfMemory}!void {
const frame = try self.allocator.create(@TypeOf(@call(.{ .modifier = .async_kw }, func, args)));
errdefer self.allocator.destroy(frame);
const node = try self.allocator.create(AllocStack.Node);
errdefer self.allocator.destroy(node);
node.* = AllocStack.Node{
.next = undefined,
.data = Node{
.handle = frame,
.bytes = std.mem.asBytes(frame),
},
};
frame.* = @call(.{ .modifier = .async_kw }, func, args);
self.alloc_stack.push(node);
}
 
/// Wait for all the calls and promises of the group to complete.
/// Thread-safe.
/// Safe to call any number of times.
pub fn wait(self: *Self) callconv(.Async) ReturnType {
const held = self.lock.acquire();
defer held.release();
 
var result: ReturnType = {};
 
while (self.frame_stack.pop()) |node| {
if (Error == void) {
await node.data;
} else {
(await node.data) catch |err| {
result = err;
};
}
}
while (self.alloc_stack.pop()) |node| {
const handle = node.data.handle;
if (Error == void) {
await handle;
} else {
(await handle) catch |err| {
result = err;
};
}
self.allocator.free(node.data.bytes);
self.allocator.destroy(node);
}
return result;
}
};
}
 
test "std.event.Group" {
// https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
 
if (!std.io.is_async) return error.SkipZigTest;
 
// TODO this file has bit-rotted. repair it
if (true) return error.SkipZigTest;
 
_ = async testGroup(std.heap.page_allocator);
}
fn testGroup(allocator: Allocator) callconv(.Async) void {
var count: usize = 0;
var group = Group(void).init(allocator);
var sleep_a_little_frame = async sleepALittle(&count);
group.add(&sleep_a_little_frame) catch @panic("memory");
var increase_by_ten_frame = async increaseByTen(&count);
group.add(&increase_by_ten_frame) catch @panic("memory");
group.wait();
try testing.expect(count == 11);
 
var another = Group(anyerror!void).init(allocator);
var something_else_frame = async somethingElse();
another.add(&something_else_frame) catch @panic("memory");
var something_that_fails_frame = async doSomethingThatFails();
another.add(&something_that_fails_frame) catch @panic("memory");
try testing.expectError(error.ItBroke, another.wait());
}
fn sleepALittle(count: *usize) callconv(.Async) void {
std.time.sleep(1 * std.time.ns_per_ms);
_ = @atomicRmw(usize, count, .Add, 1, .SeqCst);
}
fn increaseByTen(count: *usize) callconv(.Async) void {
var i: usize = 0;
while (i < 10) : (i += 1) {
_ = @atomicRmw(usize, count, .Add, 1, .SeqCst);
}
}
fn doSomethingThatFails() callconv(.Async) anyerror!void {}
fn somethingElse() callconv(.Async) anyerror!void {
return error.ItBroke;
}
 
ev/null added: 231, removed: 4796, total 0
@@ -1,162 +0,0 @@
const std = @import("../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const testing = std.testing;
const mem = std.mem;
const Loop = std.event.Loop;
 
/// Thread-safe async/await lock.
/// Functions which are waiting for the lock are suspended, and
/// are resumed when the lock is released, in order.
/// Allows only one actor to hold the lock.
/// TODO: make this API also work in blocking I/O mode.
pub const Lock = struct {
mutex: std.Thread.Mutex = std.Thread.Mutex{},
head: usize = UNLOCKED,
 
const UNLOCKED = 0;
const LOCKED = 1;
 
const global_event_loop = Loop.instance orelse
@compileError("std.event.Lock currently only works with event-based I/O");
 
const Waiter = struct {
// forced Waiter alignment to ensure it doesn't clash with LOCKED
next: ?*Waiter align(2),
tail: *Waiter,
node: Loop.NextTickNode,
};
 
pub fn initLocked() Lock {
return Lock{ .head = LOCKED };
}
 
pub fn acquire(self: *Lock) Held {
self.mutex.lock();
 
// self.head transitions from multiple stages depending on the value:
// UNLOCKED -> LOCKED:
// acquire Lock ownership when there are no waiters
// LOCKED -> <Waiter head ptr>:
// Lock is already owned, enqueue first Waiter
// <head ptr> -> <head ptr>:
// Lock is owned with pending waiters. Push our waiter to the queue.
 
if (self.head == UNLOCKED) {
self.head = LOCKED;
self.mutex.unlock();
return Held{ .lock = self };
}
 
var waiter: Waiter = undefined;
waiter.next = null;
waiter.tail = &waiter;
 
const head = switch (self.head) {
UNLOCKED => unreachable,
LOCKED => null,
else => @as(*Waiter, @ptrFromInt(self.head)),
};
 
if (head) |h| {
h.tail.next = &waiter;
h.tail = &waiter;
} else {
self.head = @intFromPtr(&waiter);
}
 
suspend {
waiter.node = Loop.NextTickNode{
.prev = undefined,
.next = undefined,
.data = @frame(),
};
self.mutex.unlock();
}
 
return Held{ .lock = self };
}
 
pub const Held = struct {
lock: *Lock,
 
pub fn release(self: Held) void {
const waiter = blk: {
self.lock.mutex.lock();
defer self.lock.mutex.unlock();
 
// self.head goes through the reverse transition from acquire():
// <head ptr> -> <new head ptr>:
// pop a waiter from the queue to give Lock ownership when there are still others pending
// <head ptr> -> LOCKED:
// pop the laster waiter from the queue, while also giving it lock ownership when awaken
// LOCKED -> UNLOCKED:
// last lock owner releases lock while no one else is waiting for it
 
switch (self.lock.head) {
UNLOCKED => {
unreachable; // Lock unlocked while unlocking
},
LOCKED => {
self.lock.head = UNLOCKED;
break :blk null;
},
else => {
const waiter = @as(*Waiter, @ptrFromInt(self.lock.head));
self.lock.head = if (waiter.next == null) LOCKED else @intFromPtr(waiter.next);
if (waiter.next) |next|
next.tail = waiter.tail;
break :blk waiter;
},
}
};
 
if (waiter) |w| {
global_event_loop.onNextTick(&w.node);
}
}
};
};
 
test "std.event.Lock" {
if (!std.io.is_async) return error.SkipZigTest;
 
// TODO https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
 
// TODO https://github.com/ziglang/zig/issues/3251
if (builtin.os.tag == .freebsd) return error.SkipZigTest;
 
var lock = Lock{};
testLock(&lock);
 
const expected_result = [1]i32{3 * @as(i32, @intCast(shared_test_data.len))} ** shared_test_data.len;
try testing.expectEqualSlices(i32, &expected_result, &shared_test_data);
}
fn testLock(lock: *Lock) void {
var handle1 = async lockRunner(lock);
var handle2 = async lockRunner(lock);
var handle3 = async lockRunner(lock);
 
await handle1;
await handle2;
await handle3;
}
 
var shared_test_data = [1]i32{0} ** 10;
var shared_test_index: usize = 0;
 
fn lockRunner(lock: *Lock) void {
Lock.global_event_loop.yield();
 
var i: usize = 0;
while (i < shared_test_data.len) : (i += 1) {
const handle = lock.acquire();
defer handle.release();
 
shared_test_index = 0;
while (shared_test_index < shared_test_data.len) : (shared_test_index += 1) {
shared_test_data[shared_test_index] = shared_test_data[shared_test_index] + 1;
}
}
}
 
ev/null added: 231, removed: 4796, total 0
@@ -1,42 +0,0 @@
const std = @import("../std.zig");
const Lock = std.event.Lock;
 
/// Thread-safe async/await lock that protects one piece of data.
/// Functions which are waiting for the lock are suspended, and
/// are resumed when the lock is released, in order.
pub fn Locked(comptime T: type) type {
return struct {
lock: Lock,
private_data: T,
 
const Self = @This();
 
pub const HeldLock = struct {
value: *T,
held: Lock.Held,
 
pub fn release(self: HeldLock) void {
self.held.release();
}
};
 
pub fn init(data: T) Self {
return Self{
.lock = .{},
.private_data = data,
};
}
 
pub fn deinit(self: *Self) void {
self.lock.deinit();
}
 
pub fn acquire(self: *Self) callconv(.Async) HeldLock {
return HeldLock{
// TODO guaranteed allocation elision
.held = self.lock.acquire(),
.value = &self.private_data,
};
}
};
}
 
ev/null added: 231, removed: 4796, total 0
@@ -1,1791 +0,0 @@
const std = @import("../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const testing = std.testing;
const mem = std.mem;
const os = std.os;
const windows = os.windows;
const maxInt = std.math.maxInt;
const Thread = std.Thread;
 
const is_windows = builtin.os.tag == .windows;
 
pub const Loop = struct {
next_tick_queue: std.atomic.Queue(anyframe),
os_data: OsData,
final_resume_node: ResumeNode,
pending_event_count: usize,
extra_threads: []Thread,
/// TODO change this to a pool of configurable number of threads
/// and rename it to be not file-system-specific. it will become
/// a thread pool for turning non-CPU-bound blocking things into
/// async things. A fallback for any missing OS-specific API.
fs_thread: Thread,
fs_queue: std.atomic.Queue(Request),
fs_end_request: Request.Node,
fs_thread_wakeup: std.Thread.ResetEvent,
 
/// For resources that have the same lifetime as the `Loop`.
/// This is only used by `Loop` for the thread pool and associated resources.
arena: std.heap.ArenaAllocator,
 
/// State which manages frames that are sleeping on timers
delay_queue: DelayQueue,
 
/// Pre-allocated eventfds. All permanently active.
/// This is how `Loop` sends promises to be resumed on other threads.
available_eventfd_resume_nodes: std.atomic.Stack(ResumeNode.EventFd),
eventfd_resume_nodes: []std.atomic.Stack(ResumeNode.EventFd).Node,
 
pub const NextTickNode = std.atomic.Queue(anyframe).Node;
 
pub const ResumeNode = struct {
id: Id,
handle: anyframe,
overlapped: Overlapped,
 
pub const overlapped_init = switch (builtin.os.tag) {
.windows => windows.OVERLAPPED{
.Internal = 0,
.InternalHigh = 0,
.DUMMYUNIONNAME = .{
.DUMMYSTRUCTNAME = .{
.Offset = 0,
.OffsetHigh = 0,
},
},
.hEvent = null,
},
else => {},
};
pub const Overlapped = @TypeOf(overlapped_init);
 
pub const Id = enum {
basic,
stop,
event_fd,
};
 
pub const EventFd = switch (builtin.os.tag) {
.macos, .ios, .tvos, .watchos, .freebsd, .netbsd, .dragonfly, .openbsd => KEventFd,
.linux => struct {
base: ResumeNode,
epoll_op: u32,
eventfd: i32,
},
.windows => struct {
base: ResumeNode,
completion_key: usize,
},
else => struct {},
};
 
const KEventFd = struct {
base: ResumeNode,
kevent: os.Kevent,
};
 
pub const Basic = switch (builtin.os.tag) {
.macos, .ios, .tvos, .watchos, .freebsd, .netbsd, .dragonfly, .openbsd => KEventBasic,
.linux => struct {
base: ResumeNode,
},
.windows => struct {
base: ResumeNode,
},
else => @compileError("unsupported OS"),
};
 
const KEventBasic = struct {
base: ResumeNode,
kev: os.Kevent,
};
};
 
pub const Instance = switch (std.options.io_mode) {
.blocking => @TypeOf(null),
.evented => ?*Loop,
};
pub const instance = std.options.event_loop;
 
var global_instance_state: Loop = undefined;
pub const default_instance = switch (std.options.io_mode) {
.blocking => null,
.evented => &global_instance_state,
};
 
pub const Mode = enum {
single_threaded,
multi_threaded,
};
pub const default_mode = .multi_threaded;
 
/// TODO copy elision / named return values so that the threads referencing *Loop
/// have the correct pointer value.
/// https://github.com/ziglang/zig/issues/2761 and https://github.com/ziglang/zig/issues/2765
pub fn init(self: *Loop) !void {
if (builtin.single_threaded or std.options.event_loop_mode == .single_threaded) {
return self.initSingleThreaded();
} else {
return self.initMultiThreaded();
}
}
 
/// After initialization, call run().
/// TODO copy elision / named return values so that the threads referencing *Loop
/// have the correct pointer value.
/// https://github.com/ziglang/zig/issues/2761 and https://github.com/ziglang/zig/issues/2765
pub fn initSingleThreaded(self: *Loop) !void {
return self.initThreadPool(1);
}
 
/// After initialization, call run().
/// This is the same as `initThreadPool` using `Thread.getCpuCount` to determine the thread
/// pool size.
/// TODO copy elision / named return values so that the threads referencing *Loop
/// have the correct pointer value.
/// https://github.com/ziglang/zig/issues/2761 and https://github.com/ziglang/zig/issues/2765
pub fn initMultiThreaded(self: *Loop) !void {
if (builtin.single_threaded)
@compileError("initMultiThreaded unavailable when building in single-threaded mode");
const core_count = try Thread.getCpuCount();
return self.initThreadPool(core_count);
}
 
/// Thread count is the total thread count. The thread pool size will be
/// max(thread_count - 1, 0)
pub fn initThreadPool(self: *Loop, thread_count: usize) !void {
self.* = Loop{
.arena = std.heap.ArenaAllocator.init(std.heap.page_allocator),
.pending_event_count = 1,
.os_data = undefined,
.next_tick_queue = std.atomic.Queue(anyframe).init(),
.extra_threads = undefined,
.available_eventfd_resume_nodes = std.atomic.Stack(ResumeNode.EventFd).init(),
.eventfd_resume_nodes = undefined,
.final_resume_node = ResumeNode{
.id = .stop,
.handle = undefined,
.overlapped = ResumeNode.overlapped_init,
},
.fs_end_request = .{ .data = .{ .msg = .end, .finish = .no_action } },
.fs_queue = std.atomic.Queue(Request).init(),
.fs_thread = undefined,
.fs_thread_wakeup = .{},
.delay_queue = undefined,
};
errdefer self.arena.deinit();
 
// We need at least one of these in case the fs thread wants to use onNextTick
const extra_thread_count = thread_count - 1;
const resume_node_count = @max(extra_thread_count, 1);
self.eventfd_resume_nodes = try self.arena.allocator().alloc(
std.atomic.Stack(ResumeNode.EventFd).Node,
resume_node_count,
);
 
self.extra_threads = try self.arena.allocator().alloc(Thread, extra_thread_count);
 
try self.initOsData(extra_thread_count);
errdefer self.deinitOsData();
 
if (!builtin.single_threaded) {
self.fs_thread = try Thread.spawn(.{}, posixFsRun, .{self});
}
errdefer if (!builtin.single_threaded) {
self.posixFsRequest(&self.fs_end_request);
self.fs_thread.join();
};
 
if (!builtin.single_threaded)
try self.delay_queue.init();
}
 
pub fn deinit(self: *Loop) void {
self.deinitOsData();
self.arena.deinit();
self.* = undefined;
}
 
const InitOsDataError = os.EpollCreateError || mem.Allocator.Error || os.EventFdError ||
Thread.SpawnError || os.EpollCtlError || os.KEventError ||
windows.CreateIoCompletionPortError;
 
const wakeup_bytes = [_]u8{0x1} ** 8;
 
fn initOsData(self: *Loop, extra_thread_count: usize) InitOsDataError!void {
nosuspend switch (builtin.os.tag) {
.linux => {
errdefer {
while (self.available_eventfd_resume_nodes.pop()) |node| os.close(node.data.eventfd);
}
for (self.eventfd_resume_nodes) |*eventfd_node| {
eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{
.data = ResumeNode.EventFd{
.base = ResumeNode{
.id = .event_fd,
.handle = undefined,
.overlapped = ResumeNode.overlapped_init,
},
.eventfd = try os.eventfd(1, os.linux.EFD.CLOEXEC | os.linux.EFD.NONBLOCK),
.epoll_op = os.linux.EPOLL.CTL_ADD,
},
.next = undefined,
};
self.available_eventfd_resume_nodes.push(eventfd_node);
}
 
self.os_data.epollfd = try os.epoll_create1(os.linux.EPOLL.CLOEXEC);
errdefer os.close(self.os_data.epollfd);
 
self.os_data.final_eventfd = try os.eventfd(0, os.linux.EFD.CLOEXEC | os.linux.EFD.NONBLOCK);
errdefer os.close(self.os_data.final_eventfd);
 
self.os_data.final_eventfd_event = os.linux.epoll_event{
.events = os.linux.EPOLL.IN,
.data = os.linux.epoll_data{ .ptr = @intFromPtr(&self.final_resume_node) },
};
try os.epoll_ctl(
self.os_data.epollfd,
os.linux.EPOLL.CTL_ADD,
self.os_data.final_eventfd,
&self.os_data.final_eventfd_event,
);
 
if (builtin.single_threaded) {
assert(extra_thread_count == 0);
return;
}
 
var extra_thread_index: usize = 0;
errdefer {
// writing 8 bytes to an eventfd cannot fail
const amt = os.write(self.os_data.final_eventfd, &wakeup_bytes) catch unreachable;
assert(amt == wakeup_bytes.len);
while (extra_thread_index != 0) {
extra_thread_index -= 1;
self.extra_threads[extra_thread_index].join();
}
}
while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) {
self.extra_threads[extra_thread_index] = try Thread.spawn(.{}, workerRun, .{self});
}
},
.macos, .ios, .tvos, .watchos, .freebsd, .netbsd, .dragonfly => {
self.os_data.kqfd = try os.kqueue();
errdefer os.close(self.os_data.kqfd);
 
const empty_kevs = &[0]os.Kevent{};
 
for (self.eventfd_resume_nodes, 0..) |*eventfd_node, i| {
eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{
.data = ResumeNode.EventFd{
.base = ResumeNode{
.id = .event_fd,
.handle = undefined,
.overlapped = ResumeNode.overlapped_init,
},
// this one is for sending events
.kevent = os.Kevent{
.ident = i,
.filter = os.system.EVFILT_USER,
.flags = os.system.EV_CLEAR | os.system.EV_ADD | os.system.EV_DISABLE,
.fflags = 0,
.data = 0,
.udata = @intFromPtr(&eventfd_node.data.base),
},
},
.next = undefined,
};
self.available_eventfd_resume_nodes.push(eventfd_node);
const kevent_array = @as(*const [1]os.Kevent, &eventfd_node.data.kevent);
_ = try os.kevent(self.os_data.kqfd, kevent_array, empty_kevs, null);
eventfd_node.data.kevent.flags = os.system.EV_CLEAR | os.system.EV_ENABLE;
eventfd_node.data.kevent.fflags = os.system.NOTE_TRIGGER;
}
 
// Pre-add so that we cannot get error.SystemResources
// later when we try to activate it.
self.os_data.final_kevent = os.Kevent{
.ident = extra_thread_count,
.filter = os.system.EVFILT_USER,
.flags = os.system.EV_ADD | os.system.EV_DISABLE,
.fflags = 0,
.data = 0,
.udata = @intFromPtr(&self.final_resume_node),
};
const final_kev_arr = @as(*const [1]os.Kevent, &self.os_data.final_kevent);
_ = try os.kevent(self.os_data.kqfd, final_kev_arr, empty_kevs, null);
self.os_data.final_kevent.flags = os.system.EV_ENABLE;
self.os_data.final_kevent.fflags = os.system.NOTE_TRIGGER;
 
if (builtin.single_threaded) {
assert(extra_thread_count == 0);
return;
}
 
var extra_thread_index: usize = 0;
errdefer {
_ = os.kevent(self.os_data.kqfd, final_kev_arr, empty_kevs, null) catch unreachable;
while (extra_thread_index != 0) {
extra_thread_index -= 1;
self.extra_threads[extra_thread_index].join();
}
}
while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) {
self.extra_threads[extra_thread_index] = try Thread.spawn(.{}, workerRun, .{self});
}
},
.openbsd => {
self.os_data.kqfd = try os.kqueue();
errdefer os.close(self.os_data.kqfd);
 
const empty_kevs = &[0]os.Kevent{};
 
for (self.eventfd_resume_nodes, 0..) |*eventfd_node, i| {
eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{
.data = ResumeNode.EventFd{
.base = ResumeNode{
.id = .event_fd,
.handle = undefined,
.overlapped = ResumeNode.overlapped_init,
},
// this one is for sending events
.kevent = os.Kevent{
.ident = i,
.filter = os.system.EVFILT_TIMER,
.flags = os.system.EV_CLEAR | os.system.EV_ADD | os.system.EV_DISABLE | os.system.EV_ONESHOT,
.fflags = 0,
.data = 0,
.udata = @intFromPtr(&eventfd_node.data.base),
},
},
.next = undefined,
};
self.available_eventfd_resume_nodes.push(eventfd_node);
const kevent_array = @as(*const [1]os.Kevent, &eventfd_node.data.kevent);
_ = try os.kevent(self.os_data.kqfd, kevent_array, empty_kevs, null);
eventfd_node.data.kevent.flags = os.system.EV_CLEAR | os.system.EV_ENABLE;
}
 
// Pre-add so that we cannot get error.SystemResources
// later when we try to activate it.
self.os_data.final_kevent = os.Kevent{
.ident = extra_thread_count,
.filter = os.system.EVFILT_TIMER,
.flags = os.system.EV_ADD | os.system.EV_ONESHOT | os.system.EV_DISABLE,
.fflags = 0,
.data = 0,
.udata = @intFromPtr(&self.final_resume_node),
};
const final_kev_arr = @as(*const [1]os.Kevent, &self.os_data.final_kevent);
_ = try os.kevent(self.os_data.kqfd, final_kev_arr, empty_kevs, null);
self.os_data.final_kevent.flags = os.system.EV_ENABLE;
 
if (builtin.single_threaded) {
assert(extra_thread_count == 0);
return;
}
 
var extra_thread_index: usize = 0;
errdefer {
_ = os.kevent(self.os_data.kqfd, final_kev_arr, empty_kevs, null) catch unreachable;
while (extra_thread_index != 0) {
extra_thread_index -= 1;
self.extra_threads[extra_thread_index].join();
}
}
while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) {
self.extra_threads[extra_thread_index] = try Thread.spawn(.{}, workerRun, .{self});
}
},
.windows => {
self.os_data.io_port = try windows.CreateIoCompletionPort(
windows.INVALID_HANDLE_VALUE,
null,
undefined,
maxInt(windows.DWORD),
);
errdefer windows.CloseHandle(self.os_data.io_port);
 
for (self.eventfd_resume_nodes) |*eventfd_node| {
eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{
.data = ResumeNode.EventFd{
.base = ResumeNode{
.id = .event_fd,
.handle = undefined,
.overlapped = ResumeNode.overlapped_init,
},
// this one is for sending events
.completion_key = @intFromPtr(&eventfd_node.data.base),
},
.next = undefined,
};
self.available_eventfd_resume_nodes.push(eventfd_node);
}
 
if (builtin.single_threaded) {
assert(extra_thread_count == 0);
return;
}
 
var extra_thread_index: usize = 0;
errdefer {
var i: usize = 0;
while (i < extra_thread_index) : (i += 1) {
while (true) {
const overlapped = &self.final_resume_node.overlapped;
windows.PostQueuedCompletionStatus(self.os_data.io_port, undefined, undefined, overlapped) catch continue;
break;
}
}
while (extra_thread_index != 0) {
extra_thread_index -= 1;
self.extra_threads[extra_thread_index].join();
}
}
while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) {
self.extra_threads[extra_thread_index] = try Thread.spawn(.{}, workerRun, .{self});
}
},
else => {},
};
}
 
fn deinitOsData(self: *Loop) void {
nosuspend switch (builtin.os.tag) {
.linux => {
os.close(self.os_data.final_eventfd);
while (self.available_eventfd_resume_nodes.pop()) |node| os.close(node.data.eventfd);
os.close(self.os_data.epollfd);
},
.macos, .ios, .tvos, .watchos, .freebsd, .netbsd, .dragonfly, .openbsd => {
os.close(self.os_data.kqfd);
},
.windows => {
windows.CloseHandle(self.os_data.io_port);
},
else => {},
};
}
 
/// resume_node must live longer than the anyframe that it holds a reference to.
/// flags must contain EPOLLET
pub fn linuxAddFd(self: *Loop, fd: i32, resume_node: *ResumeNode, flags: u32) !void {
assert(flags & os.linux.EPOLL.ET == os.linux.EPOLL.ET);
self.beginOneEvent();
errdefer self.finishOneEvent();
try self.linuxModFd(
fd,
os.linux.EPOLL.CTL_ADD,
flags,
resume_node,
);
}
 
pub fn linuxModFd(self: *Loop, fd: i32, op: u32, flags: u32, resume_node: *ResumeNode) !void {
assert(flags & os.linux.EPOLL.ET == os.linux.EPOLL.ET);
var ev = os.linux.epoll_event{
.events = flags,
.data = os.linux.epoll_data{ .ptr = @intFromPtr(resume_node) },
};
try os.epoll_ctl(self.os_data.epollfd, op, fd, &ev);
}
 
pub fn linuxRemoveFd(self: *Loop, fd: i32) void {
os.epoll_ctl(self.os_data.epollfd, os.linux.EPOLL.CTL_DEL, fd, null) catch {};
self.finishOneEvent();
}
 
pub fn linuxWaitFd(self: *Loop, fd: i32, flags: u32) void {
assert(flags & os.linux.EPOLL.ET == os.linux.EPOLL.ET);
assert(flags & os.linux.EPOLL.ONESHOT == os.linux.EPOLL.ONESHOT);
var resume_node = ResumeNode.Basic{
.base = ResumeNode{
.id = .basic,
.handle = @frame(),
.overlapped = ResumeNode.overlapped_init,
},
};
var need_to_delete = true;
defer if (need_to_delete) self.linuxRemoveFd(fd);
 
suspend {
self.linuxAddFd(fd, &resume_node.base, flags) catch |err| switch (err) {
error.FileDescriptorNotRegistered => unreachable,
error.OperationCausesCircularLoop => unreachable,
error.FileDescriptorIncompatibleWithEpoll => unreachable,
error.FileDescriptorAlreadyPresentInSet => unreachable, // evented writes to the same fd is not thread-safe
 
error.SystemResources,
error.UserResourceLimitReached,
error.Unexpected,
=> {
need_to_delete = false;
// Fall back to a blocking poll(). Ideally this codepath is never hit, since
// epoll should be just fine. But this is better than incorrect behavior.
var poll_flags: i16 = 0;
if ((flags & os.linux.EPOLL.IN) != 0) poll_flags |= os.POLL.IN;
if ((flags & os.linux.EPOLL.OUT) != 0) poll_flags |= os.POLL.OUT;
var pfd = [1]os.pollfd{os.pollfd{
.fd = fd,
.events = poll_flags,
.revents = undefined,
}};
_ = os.poll(&pfd, -1) catch |poll_err| switch (poll_err) {
error.NetworkSubsystemFailed => unreachable, // only possible on windows
 
error.SystemResources,
error.Unexpected,
=> {
// Even poll() didn't work. The best we can do now is sleep for a
// small duration and then hope that something changed.
std.time.sleep(1 * std.time.ns_per_ms);
},
};
resume @frame();
},
};
}
}
 
pub fn waitUntilFdReadable(self: *Loop, fd: os.fd_t) void {
switch (builtin.os.tag) {
.linux => {
self.linuxWaitFd(fd, os.linux.EPOLL.ET | os.linux.EPOLL.ONESHOT | os.linux.EPOLL.IN);
},
.macos, .ios, .tvos, .watchos, .freebsd, .netbsd, .dragonfly, .openbsd => {
self.bsdWaitKev(@as(usize, @intCast(fd)), os.system.EVFILT_READ, os.system.EV_ONESHOT);
},
else => @compileError("Unsupported OS"),
}
}
 
pub fn waitUntilFdWritable(self: *Loop, fd: os.fd_t) void {
switch (builtin.os.tag) {
.linux => {
self.linuxWaitFd(fd, os.linux.EPOLL.ET | os.linux.EPOLL.ONESHOT | os.linux.EPOLL.OUT);
},
.macos, .ios, .tvos, .watchos, .freebsd, .netbsd, .dragonfly, .openbsd => {
self.bsdWaitKev(@as(usize, @intCast(fd)), os.system.EVFILT_WRITE, os.system.EV_ONESHOT);
},
else => @compileError("Unsupported OS"),
}
}
 
pub fn waitUntilFdWritableOrReadable(self: *Loop, fd: os.fd_t) void {
switch (builtin.os.tag) {
.linux => {
self.linuxWaitFd(fd, os.linux.EPOLL.ET | os.linux.EPOLL.ONESHOT | os.linux.EPOLL.OUT | os.linux.EPOLL.IN);
},
.macos, .ios, .tvos, .watchos, .freebsd, .netbsd, .dragonfly, .openbsd => {
self.bsdWaitKev(@as(usize, @intCast(fd)), os.system.EVFILT_READ, os.system.EV_ONESHOT);
self.bsdWaitKev(@as(usize, @intCast(fd)), os.system.EVFILT_WRITE, os.system.EV_ONESHOT);
},
else => @compileError("Unsupported OS"),
}
}
 
pub fn bsdWaitKev(self: *Loop, ident: usize, filter: i16, flags: u16) void {
var resume_node = ResumeNode.Basic{
.base = ResumeNode{
.id = .basic,
.handle = @frame(),
.overlapped = ResumeNode.overlapped_init,
},
.kev = undefined,
};
 
defer {
// If the kevent was set to be ONESHOT, it doesn't need to be deleted manually.
if (flags & os.system.EV_ONESHOT != 0) {
self.bsdRemoveKev(ident, filter);
}
}
 
suspend {
self.bsdAddKev(&resume_node, ident, filter, flags) catch unreachable;
}
}
 
/// resume_node must live longer than the anyframe that it holds a reference to.
pub fn bsdAddKev(self: *Loop, resume_node: *ResumeNode.Basic, ident: usize, filter: i16, flags: u16) !void {
self.beginOneEvent();
errdefer self.finishOneEvent();
var kev = [1]os.Kevent{os.Kevent{
.ident = ident,
.filter = filter,
.flags = os.system.EV_ADD | os.system.EV_ENABLE | os.system.EV_CLEAR | flags,
.fflags = 0,
.data = 0,
.udata = @intFromPtr(&resume_node.base),
}};
const empty_kevs = &[0]os.Kevent{};
_ = try os.kevent(self.os_data.kqfd, &kev, empty_kevs, null);
}
 
pub fn bsdRemoveKev(self: *Loop, ident: usize, filter: i16) void {
var kev = [1]os.Kevent{os.Kevent{
.ident = ident,
.filter = filter,
.flags = os.system.EV_DELETE,
.fflags = 0,
.data = 0,
.udata = 0,
}};
const empty_kevs = &[0]os.Kevent{};
_ = os.kevent(self.os_data.kqfd, &kev, empty_kevs, null) catch undefined;
self.finishOneEvent();
}
 
fn dispatch(self: *Loop) void {
while (self.available_eventfd_resume_nodes.pop()) |resume_stack_node| {
const next_tick_node = self.next_tick_queue.get() orelse {
self.available_eventfd_resume_nodes.push(resume_stack_node);
return;
};
const eventfd_node = &resume_stack_node.data;
eventfd_node.base.handle = next_tick_node.data;
switch (builtin.os.tag) {
.macos, .ios, .tvos, .watchos, .freebsd, .netbsd, .dragonfly, .openbsd => {
const kevent_array = @as(*const [1]os.Kevent, &eventfd_node.kevent);
const empty_kevs = &[0]os.Kevent{};
_ = os.kevent(self.os_data.kqfd, kevent_array, empty_kevs, null) catch {
self.next_tick_queue.unget(next_tick_node);
self.available_eventfd_resume_nodes.push(resume_stack_node);
return;
};
},
.linux => {
// the pending count is already accounted for
const epoll_events = os.linux.EPOLL.ONESHOT | os.linux.EPOLL.IN | os.linux.EPOLL.OUT |
os.linux.EPOLL.ET;
self.linuxModFd(
eventfd_node.eventfd,
eventfd_node.epoll_op,
epoll_events,
&eventfd_node.base,
) catch {
self.next_tick_queue.unget(next_tick_node);
self.available_eventfd_resume_nodes.push(resume_stack_node);
return;
};
},
.windows => {
windows.PostQueuedCompletionStatus(
self.os_data.io_port,
undefined,
undefined,
&eventfd_node.base.overlapped,
) catch {
self.next_tick_queue.unget(next_tick_node);
self.available_eventfd_resume_nodes.push(resume_stack_node);
return;
};
},
else => @compileError("unsupported OS"),
}
}
}
 
/// Bring your own linked list node. This means it can't fail.
pub fn onNextTick(self: *Loop, node: *NextTickNode) void {
self.beginOneEvent(); // finished in dispatch()
self.next_tick_queue.put(node);
self.dispatch();
}
 
pub fn cancelOnNextTick(self: *Loop, node: *NextTickNode) void {
if (self.next_tick_queue.remove(node)) {
self.finishOneEvent();
}
}
 
pub fn run(self: *Loop) void {
self.finishOneEvent(); // the reference we start with
 
self.workerRun();
 
if (!builtin.single_threaded) {
switch (builtin.os.tag) {
.linux,
.macos,
.ios,
.tvos,
.watchos,
.freebsd,
.netbsd,
.dragonfly,
.openbsd,
=> self.fs_thread.join(),
else => {},
}
}
 
for (self.extra_threads) |extra_thread| {
extra_thread.join();
}
 
self.delay_queue.deinit();
}
 
/// Runs the provided function asynchronously. The function's frame is allocated
/// with `allocator` and freed when the function returns.
/// `func` must return void and it can be an async function.
/// Yields to the event loop, running the function on the next tick.
pub fn runDetached(self: *Loop, alloc: mem.Allocator, comptime func: anytype, args: anytype) error{OutOfMemory}!void {
if (!std.io.is_async) @compileError("Can't use runDetached in non-async mode!");
if (@TypeOf(@call(.{}, func, args)) != void) {
@compileError("`func` must not have a return value");
}
 
const Wrapper = struct {
const Args = @TypeOf(args);
fn run(func_args: Args, loop: *Loop, allocator: mem.Allocator) void {
loop.beginOneEvent();
loop.yield();
@call(.{}, func, func_args); // compile error when called with non-void ret type
suspend {
loop.finishOneEvent();
allocator.destroy(@frame());
}
}
};
 
const run_frame = try alloc.create(@Frame(Wrapper.run));
run_frame.* = async Wrapper.run(args, self, alloc);
}
 
/// Yielding lets the event loop run, starting any unstarted async operations.
/// Note that async operations automatically start when a function yields for any other reason,
/// for example, when async I/O is performed. This function is intended to be used only when
/// CPU bound tasks would be waiting in the event loop but never get started because no async I/O
/// is performed.
pub fn yield(self: *Loop) void {
suspend {
var my_tick_node = NextTickNode{
.prev = undefined,
.next = undefined,
.data = @frame(),
};
self.onNextTick(&my_tick_node);
}
}
 
/// If the build is multi-threaded and there is an event loop, then it calls `yield`. Otherwise,
/// does nothing.
pub fn startCpuBoundOperation() void {
if (builtin.single_threaded) {
return;
} else if (instance) |event_loop| {
event_loop.yield();
}
}
 
/// call finishOneEvent when done
pub fn beginOneEvent(self: *Loop) void {
_ = @atomicRmw(usize, &self.pending_event_count, .Add, 1, .SeqCst);
}
 
pub fn finishOneEvent(self: *Loop) void {
nosuspend {
const prev = @atomicRmw(usize, &self.pending_event_count, .Sub, 1, .SeqCst);
if (prev != 1) return;
 
// cause all the threads to stop
self.posixFsRequest(&self.fs_end_request);
 
switch (builtin.os.tag) {
.linux => {
// writing to the eventfd will only wake up one thread, thus multiple writes
// are needed to wakeup all the threads
var i: usize = 0;
while (i < self.extra_threads.len + 1) : (i += 1) {
// writing 8 bytes to an eventfd cannot fail
const amt = os.write(self.os_data.final_eventfd, &wakeup_bytes) catch unreachable;
assert(amt == wakeup_bytes.len);
}
return;
},
.macos, .ios, .tvos, .watchos, .freebsd, .netbsd, .dragonfly, .openbsd => {
const final_kevent = @as(*const [1]os.Kevent, &self.os_data.final_kevent);
const empty_kevs = &[0]os.Kevent{};
// cannot fail because we already added it and this just enables it
_ = os.kevent(self.os_data.kqfd, final_kevent, empty_kevs, null) catch unreachable;
return;
},
.windows => {
var i: usize = 0;
while (i < self.extra_threads.len + 1) : (i += 1) {
while (true) {
const overlapped = &self.final_resume_node.overlapped;
windows.PostQueuedCompletionStatus(self.os_data.io_port, undefined, undefined, overlapped) catch continue;
break;
}
}
return;
},
else => @compileError("unsupported OS"),
}
}
}
 
pub fn sleep(self: *Loop, nanoseconds: u64) void {
if (builtin.single_threaded)
@compileError("TODO: integrate timers with epoll/kevent/iocp for single-threaded");
 
suspend {
const now = self.delay_queue.timer.read();
 
var entry: DelayQueue.Waiters.Entry = undefined;
entry.init(@frame(), now + nanoseconds);
self.delay_queue.waiters.insert(&entry);
 
// Speculatively wake up the timer thread when we add a new entry.
// If the timer thread is sleeping on a longer entry, we need to
// interrupt it so that our entry can be expired in time.
self.delay_queue.event.set();
}
}
 
const DelayQueue = struct {
timer: std.time.Timer,
waiters: Waiters,
thread: std.Thread,
event: std.Thread.ResetEvent,
is_running: std.atomic.Value(bool),
 
/// Initialize the delay queue by spawning the timer thread
/// and starting any timer resources.
fn init(self: *DelayQueue) !void {
self.* = DelayQueue{
.timer = try std.time.Timer.start(),
.waiters = DelayQueue.Waiters{
.entries = std.atomic.Queue(anyframe).init(),
},
.thread = undefined,
.event = .{},
.is_running = std.atomic.Value(bool).init(true),
};
 
// Must be after init so that it can read the other state, such as `is_running`.
self.thread = try std.Thread.spawn(.{}, DelayQueue.run, .{self});
}
 
fn deinit(self: *DelayQueue) void {
self.is_running.store(false, .SeqCst);
self.event.set();
self.thread.join();
}
 
/// Entry point for the timer thread
/// which waits for timer entries to expire and reschedules them.
fn run(self: *DelayQueue) void {
const loop = @fieldParentPtr(Loop, "delay_queue", self);
 
while (self.is_running.load(.SeqCst)) {
self.event.reset();
const now = self.timer.read();
 
if (self.waiters.popExpired(now)) |entry| {
loop.onNextTick(&entry.node);
continue;
}
 
if (self.waiters.nextExpire()) |expires| {
if (now >= expires)
continue;
self.event.timedWait(expires - now) catch {};
} else {
self.event.wait();
}
}
}
 
// TODO: use a tickless hierarchical timer wheel:
// https://github.com/wahern/timeout/
const Waiters = struct {
entries: std.atomic.Queue(anyframe),
 
const Entry = struct {
node: NextTickNode,
expires: u64,
 
fn init(self: *Entry, frame: anyframe, expires: u64) void {
self.node.data = frame;
self.expires = expires;
}
};
 
/// Registers the entry into the queue of waiting frames
fn insert(self: *Waiters, entry: *Entry) void {
self.entries.put(&entry.node);
}
 
/// Dequeues one expired event relative to `now`
fn popExpired(self: *Waiters, now: u64) ?*Entry {
const entry = self.peekExpiringEntry() orelse return null;
if (entry.expires > now)
return null;
 
assert(self.entries.remove(&entry.node));
return entry;
}
 
/// Returns an estimate for the amount of time
/// to wait until the next waiting entry expires.
fn nextExpire(self: *Waiters) ?u64 {
const entry = self.peekExpiringEntry() orelse return null;
return entry.expires;
}
 
fn peekExpiringEntry(self: *Waiters) ?*Entry {
self.entries.mutex.lock();
defer self.entries.mutex.unlock();
 
// starting from the head
var head = self.entries.head orelse return null;
 
// traverse the list of waiting entries to
// find the Node with the smallest `expires` field
var min = head;
while (head.next) |node| {
const minEntry = @fieldParentPtr(Entry, "node", min);
const nodeEntry = @fieldParentPtr(Entry, "node", node);
if (nodeEntry.expires < minEntry.expires)
min = node;
head = node;
}
 
return @fieldParentPtr(Entry, "node", min);
}
};
};
 
/// ------- I/0 APIs -------
pub fn accept(
self: *Loop,
/// This argument is a socket that has been created with `socket`, bound to a local address
/// with `bind`, and is listening for connections after a `listen`.
sockfd: os.socket_t,
/// This argument is a pointer to a sockaddr structure. This structure is filled in with the
/// address of the peer socket, as known to the communications layer. The exact format of the
/// address returned addr is determined by the socket's address family (see `socket` and the
/// respective protocol man pages).
addr: *os.sockaddr,
/// This argument is a value-result argument: the caller must initialize it to contain the
/// size (in bytes) of the structure pointed to by addr; on return it will contain the actual size
/// of the peer address.
///
/// The returned address is truncated if the buffer provided is too small; in this case, `addr_size`
/// will return a value greater than was supplied to the call.
addr_size: *os.socklen_t,
/// The following values can be bitwise ORed in flags to obtain different behavior:
/// * `SOCK.CLOEXEC` - Set the close-on-exec (`FD_CLOEXEC`) flag on the new file descriptor. See the
/// description of the `O.CLOEXEC` flag in `open` for reasons why this may be useful.
flags: u32,
) os.AcceptError!os.socket_t {
while (true) {
return os.accept(sockfd, addr, addr_size, flags | os.SOCK.NONBLOCK) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdReadable(sockfd);
continue;
},
else => return err,
};
}
}
 
pub fn connect(self: *Loop, sockfd: os.socket_t, sock_addr: *const os.sockaddr, len: os.socklen_t) os.ConnectError!void {
os.connect(sockfd, sock_addr, len) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdWritable(sockfd);
return os.getsockoptError(sockfd);
},
else => return err,
};
}
 
/// Performs an async `os.open` using a separate thread.
pub fn openZ(self: *Loop, file_path: [*:0]const u8, flags: u32, mode: os.mode_t) os.OpenError!os.fd_t {
var req_node = Request.Node{
.data = .{
.msg = .{
.open = .{
.path = file_path,
.flags = flags,
.mode = mode,
.result = undefined,
},
},
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.open.result;
}
 
/// Performs an async `os.opent` using a separate thread.
pub fn openatZ(self: *Loop, fd: os.fd_t, file_path: [*:0]const u8, flags: u32, mode: os.mode_t) os.OpenError!os.fd_t {
var req_node = Request.Node{
.data = .{
.msg = .{
.openat = .{
.fd = fd,
.path = file_path,
.flags = flags,
.mode = mode,
.result = undefined,
},
},
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.openat.result;
}
 
/// Performs an async `os.close` using a separate thread.
pub fn close(self: *Loop, fd: os.fd_t) void {
var req_node = Request.Node{
.data = .{
.msg = .{ .close = .{ .fd = fd } },
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
}
 
/// Performs an async `os.read` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn read(self: *Loop, fd: os.fd_t, buf: []u8, simulate_evented: bool) os.ReadError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.read = .{
.fd = fd,
.buf = buf,
.result = undefined,
},
},
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.read.result;
} else {
while (true) {
return os.read(fd, buf) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdReadable(fd);
continue;
},
else => return err,
};
}
}
}
 
/// Performs an async `os.readv` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn readv(self: *Loop, fd: os.fd_t, iov: []const os.iovec, simulate_evented: bool) os.ReadError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.readv = .{
.fd = fd,
.iov = iov,
.result = undefined,
},
},
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.readv.result;
} else {
while (true) {
return os.readv(fd, iov) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdReadable(fd);
continue;
},
else => return err,
};
}
}
}
 
/// Performs an async `os.pread` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn pread(self: *Loop, fd: os.fd_t, buf: []u8, offset: u64, simulate_evented: bool) os.PReadError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.pread = .{
.fd = fd,
.buf = buf,
.offset = offset,
.result = undefined,
},
},
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.pread.result;
} else {
while (true) {
return os.pread(fd, buf, offset) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdReadable(fd);
continue;
},
else => return err,
};
}
}
}
 
/// Performs an async `os.preadv` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn preadv(self: *Loop, fd: os.fd_t, iov: []const os.iovec, offset: u64, simulate_evented: bool) os.ReadError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.preadv = .{
.fd = fd,
.iov = iov,
.offset = offset,
.result = undefined,
},
},
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.preadv.result;
} else {
while (true) {
return os.preadv(fd, iov, offset) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdReadable(fd);
continue;
},
else => return err,
};
}
}
}
 
/// Performs an async `os.write` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn write(self: *Loop, fd: os.fd_t, bytes: []const u8, simulate_evented: bool) os.WriteError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.write = .{
.fd = fd,
.bytes = bytes,
.result = undefined,
},
},
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.write.result;
} else {
while (true) {
return os.write(fd, bytes) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdWritable(fd);
continue;
},
else => return err,
};
}
}
}
 
/// Performs an async `os.writev` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn writev(self: *Loop, fd: os.fd_t, iov: []const os.iovec_const, simulate_evented: bool) os.WriteError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.writev = .{
.fd = fd,
.iov = iov,
.result = undefined,
},
},
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.writev.result;
} else {
while (true) {
return os.writev(fd, iov) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdWritable(fd);
continue;
},
else => return err,
};
}
}
}
 
/// Performs an async `os.pwrite` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn pwrite(self: *Loop, fd: os.fd_t, bytes: []const u8, offset: u64, simulate_evented: bool) os.PerformsWriteError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.pwrite = .{
.fd = fd,
.bytes = bytes,
.offset = offset,
.result = undefined,
},
},
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.pwrite.result;
} else {
while (true) {
return os.pwrite(fd, bytes, offset) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdWritable(fd);
continue;
},
else => return err,
};
}
}
}
 
/// Performs an async `os.pwritev` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn pwritev(self: *Loop, fd: os.fd_t, iov: []const os.iovec_const, offset: u64, simulate_evented: bool) os.PWriteError!usize {
if (simulate_evented) {
var req_node = Request.Node{
.data = .{
.msg = .{
.pwritev = .{
.fd = fd,
.iov = iov,
.offset = offset,
.result = undefined,
},
},
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.pwritev.result;
} else {
while (true) {
return os.pwritev(fd, iov, offset) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdWritable(fd);
continue;
},
else => return err,
};
}
}
}
 
pub fn sendto(
self: *Loop,
/// The file descriptor of the sending socket.
sockfd: os.fd_t,
/// Message to send.
buf: []const u8,
flags: u32,
dest_addr: ?*const os.sockaddr,
addrlen: os.socklen_t,
) os.SendToError!usize {
while (true) {
return os.sendto(sockfd, buf, flags, dest_addr, addrlen) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdWritable(sockfd);
continue;
},
else => return err,
};
}
}
 
pub fn recvfrom(
self: *Loop,
sockfd: os.fd_t,
buf: []u8,
flags: u32,
src_addr: ?*os.sockaddr,
addrlen: ?*os.socklen_t,
) os.RecvFromError!usize {
while (true) {
return os.recvfrom(sockfd, buf, flags, src_addr, addrlen) catch |err| switch (err) {
error.WouldBlock => {
self.waitUntilFdReadable(sockfd);
continue;
},
else => return err,
};
}
}
 
/// Performs an async `os.faccessatZ` using a separate thread.
/// `fd` must block and not return EAGAIN.
pub fn faccessatZ(
self: *Loop,
dirfd: os.fd_t,
path_z: [*:0]const u8,
mode: u32,
flags: u32,
) os.AccessError!void {
var req_node = Request.Node{
.data = .{
.msg = .{
.faccessat = .{
.dirfd = dirfd,
.path = path_z,
.mode = mode,
.flags = flags,
.result = undefined,
},
},
.finish = .{ .tick_node = .{ .data = @frame() } },
},
};
suspend {
self.posixFsRequest(&req_node);
}
return req_node.data.msg.faccessat.result;
}
 
fn workerRun(self: *Loop) void {
while (true) {
while (true) {
const next_tick_node = self.next_tick_queue.get() orelse break;
self.dispatch();
resume next_tick_node.data;
self.finishOneEvent();
}
 
switch (builtin.os.tag) {
.linux => {
// only process 1 event so we don't steal from other threads
var events: [1]os.linux.epoll_event = undefined;
const count = os.epoll_wait(self.os_data.epollfd, events[0..], -1);
for (events[0..count]) |ev| {
const resume_node = @as(*ResumeNode, @ptrFromInt(ev.data.ptr));
const handle = resume_node.handle;
const resume_node_id = resume_node.id;
switch (resume_node_id) {
.basic => {},
.stop => return,
.event_fd => {
const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node);
event_fd_node.epoll_op = os.linux.EPOLL.CTL_MOD;
const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node);
self.available_eventfd_resume_nodes.push(stack_node);
},
}
resume handle;
if (resume_node_id == .event_fd) {
self.finishOneEvent();
}
}
},
.macos, .ios, .tvos, .watchos, .freebsd, .netbsd, .dragonfly, .openbsd => {
var eventlist: [1]os.Kevent = undefined;
const empty_kevs = &[0]os.Kevent{};
const count = os.kevent(self.os_data.kqfd, empty_kevs, eventlist[0..], null) catch unreachable;
for (eventlist[0..count]) |ev| {
const resume_node = @as(*ResumeNode, @ptrFromInt(ev.udata));
const handle = resume_node.handle;
const resume_node_id = resume_node.id;
switch (resume_node_id) {
.basic => {
const basic_node = @fieldParentPtr(ResumeNode.Basic, "base", resume_node);
basic_node.kev = ev;
},
.stop => return,
.event_fd => {
const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node);
const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node);
self.available_eventfd_resume_nodes.push(stack_node);
},
}
resume handle;
if (resume_node_id == .event_fd) {
self.finishOneEvent();
}
}
},
.windows => {
var completion_key: usize = undefined;
const overlapped = while (true) {
var nbytes: windows.DWORD = undefined;
var overlapped: ?*windows.OVERLAPPED = undefined;
switch (windows.GetQueuedCompletionStatus(self.os_data.io_port, &nbytes, &completion_key, &overlapped, windows.INFINITE)) {
.Aborted => return,
.Normal => {},
.EOF => {},
.Cancelled => continue,
}
if (overlapped) |o| break o;
};
const resume_node = @fieldParentPtr(ResumeNode, "overlapped", overlapped);
const handle = resume_node.handle;
const resume_node_id = resume_node.id;
switch (resume_node_id) {
.basic => {},
.stop => return,
.event_fd => {
const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node);
const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node);
self.available_eventfd_resume_nodes.push(stack_node);
},
}
resume handle;
self.finishOneEvent();
},
else => @compileError("unsupported OS"),
}
}
}
 
fn posixFsRequest(self: *Loop, request_node: *Request.Node) void {
self.beginOneEvent(); // finished in posixFsRun after processing the msg
self.fs_queue.put(request_node);
self.fs_thread_wakeup.set();
}
 
fn posixFsCancel(self: *Loop, request_node: *Request.Node) void {
if (self.fs_queue.remove(request_node)) {
self.finishOneEvent();
}
}
 
fn posixFsRun(self: *Loop) void {
nosuspend while (true) {
self.fs_thread_wakeup.reset();
while (self.fs_queue.get()) |node| {
switch (node.data.msg) {
.end => return,
.read => |*msg| {
msg.result = os.read(msg.fd, msg.buf);
},
.readv => |*msg| {
msg.result = os.readv(msg.fd, msg.iov);
},
.write => |*msg| {
msg.result = os.write(msg.fd, msg.bytes);
},
.writev => |*msg| {
msg.result = os.writev(msg.fd, msg.iov);
},
.pwrite => |*msg| {
msg.result = os.pwrite(msg.fd, msg.bytes, msg.offset);
},
.pwritev => |*msg| {
msg.result = os.pwritev(msg.fd, msg.iov, msg.offset);
},
.pread => |*msg| {
msg.result = os.pread(msg.fd, msg.buf, msg.offset);
},
.preadv => |*msg| {
msg.result = os.preadv(msg.fd, msg.iov, msg.offset);
},
.open => |*msg| {
if (is_windows) unreachable; // TODO
msg.result = os.openZ(msg.path, msg.flags, msg.mode);
},
.openat => |*msg| {
if (is_windows) unreachable; // TODO
msg.result = os.openatZ(msg.fd, msg.path, msg.flags, msg.mode);
},
.faccessat => |*msg| {
msg.result = os.faccessatZ(msg.dirfd, msg.path, msg.mode, msg.flags);
},
.close => |*msg| os.close(msg.fd),
}
switch (node.data.finish) {
.tick_node => |*tick_node| self.onNextTick(tick_node),
.no_action => {},
}
self.finishOneEvent();
}
self.fs_thread_wakeup.wait();
};
}
 
const OsData = switch (builtin.os.tag) {
.linux => LinuxOsData,
.macos, .ios, .tvos, .watchos, .freebsd, .netbsd, .dragonfly, .openbsd => KEventData,
.windows => struct {
io_port: windows.HANDLE,
extra_thread_count: usize,
},
else => struct {},
};
 
const KEventData = struct {
kqfd: i32,
final_kevent: os.Kevent,
};
 
const LinuxOsData = struct {
epollfd: i32,
final_eventfd: i32,
final_eventfd_event: os.linux.epoll_event,
};
 
pub const Request = struct {
msg: Msg,
finish: Finish,
 
pub const Node = std.atomic.Queue(Request).Node;
 
pub const Finish = union(enum) {
tick_node: Loop.NextTickNode,
no_action,
};
 
pub const Msg = union(enum) {
read: Read,
readv: ReadV,
write: Write,
writev: WriteV,
pwrite: PWrite,
pwritev: PWriteV,
pread: PRead,
preadv: PReadV,
open: Open,
openat: OpenAt,
close: Close,
faccessat: FAccessAt,
 
/// special - means the fs thread should exit
end,
 
pub const Read = struct {
fd: os.fd_t,
buf: []u8,
result: Error!usize,
 
pub const Error = os.ReadError;
};
 
pub const ReadV = struct {
fd: os.fd_t,
iov: []const os.iovec,
result: Error!usize,
 
pub const Error = os.ReadError;
};
 
pub const Write = struct {
fd: os.fd_t,
bytes: []const u8,
result: Error!usize,
 
pub const Error = os.WriteError;
};
 
pub const WriteV = struct {
fd: os.fd_t,
iov: []const os.iovec_const,
result: Error!usize,
 
pub const Error = os.WriteError;
};
 
pub const PWrite = struct {
fd: os.fd_t,
bytes: []const u8,
offset: usize,
result: Error!usize,
 
pub const Error = os.PWriteError;
};
 
pub const PWriteV = struct {
fd: os.fd_t,
iov: []const os.iovec_const,
offset: usize,
result: Error!usize,
 
pub const Error = os.PWriteError;
};
 
pub const PRead = struct {
fd: os.fd_t,
buf: []u8,
offset: usize,
result: Error!usize,
 
pub const Error = os.PReadError;
};
 
pub const PReadV = struct {
fd: os.fd_t,
iov: []const os.iovec,
offset: usize,
result: Error!usize,
 
pub const Error = os.PReadError;
};
 
pub const Open = struct {
path: [*:0]const u8,
flags: u32,
mode: os.mode_t,
result: Error!os.fd_t,
 
pub const Error = os.OpenError;
};
 
pub const OpenAt = struct {
fd: os.fd_t,
path: [*:0]const u8,
flags: u32,
mode: os.mode_t,
result: Error!os.fd_t,
 
pub const Error = os.OpenError;
};
 
pub const Close = struct {
fd: os.fd_t,
};
 
pub const FAccessAt = struct {
dirfd: os.fd_t,
path: [*:0]const u8,
mode: u32,
flags: u32,
result: Error!void,
 
pub const Error = os.AccessError;
};
};
};
};
 
test "std.event.Loop - basic" {
// https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
 
if (true) {
// https://github.com/ziglang/zig/issues/4922
return error.SkipZigTest;
}
 
var loop: Loop = undefined;
try loop.initMultiThreaded();
defer loop.deinit();
 
loop.run();
}
 
fn testEventLoop() i32 {
return 1234;
}
 
fn testEventLoop2(h: anyframe->i32, did_it: *bool) void {
const value = await h;
try testing.expect(value == 1234);
did_it.* = true;
}
 
var testRunDetachedData: usize = 0;
test "std.event.Loop - runDetached" {
// https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
if (!std.io.is_async) return error.SkipZigTest;
if (true) {
// https://github.com/ziglang/zig/issues/4922
return error.SkipZigTest;
}
 
var loop: Loop = undefined;
try loop.initMultiThreaded();
defer loop.deinit();
 
// Schedule the execution, won't actually start until we start the
// event loop.
try loop.runDetached(std.testing.allocator, testRunDetached, .{});
 
// Now we can start the event loop. The function will return only
// after all tasks have been completed, allowing us to synchronize
// with the previous runDetached.
loop.run();
 
try testing.expect(testRunDetachedData == 1);
}
 
fn testRunDetached() void {
testRunDetachedData += 1;
}
 
test "std.event.Loop - sleep" {
// https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
if (!std.io.is_async) return error.SkipZigTest;
 
const frames = try testing.allocator.alloc(@Frame(testSleep), 10);
defer testing.allocator.free(frames);
 
const wait_time = 100 * std.time.ns_per_ms;
var sleep_count: usize = 0;
 
for (frames) |*frame|
frame.* = async testSleep(wait_time, &sleep_count);
for (frames) |*frame|
await frame;
 
try testing.expect(sleep_count == frames.len);
}
 
fn testSleep(wait_ns: u64, sleep_count: *usize) void {
Loop.instance.?.sleep(wait_ns);
_ = @atomicRmw(usize, sleep_count, .Add, 1, .SeqCst);
}
 
ev/null added: 231, removed: 4796, total 0
@@ -1,292 +0,0 @@
const std = @import("../std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const testing = std.testing;
const mem = std.mem;
const Loop = std.event.Loop;
const Allocator = std.mem.Allocator;
 
/// Thread-safe async/await lock.
/// Functions which are waiting for the lock are suspended, and
/// are resumed when the lock is released, in order.
/// Many readers can hold the lock at the same time; however locking for writing is exclusive.
/// When a read lock is held, it will not be released until the reader queue is empty.
/// When a write lock is held, it will not be released until the writer queue is empty.
/// TODO: make this API also work in blocking I/O mode
pub const RwLock = struct {
shared_state: State,
writer_queue: Queue,
reader_queue: Queue,
writer_queue_empty: bool,
reader_queue_empty: bool,
reader_lock_count: usize,
 
const State = enum(u8) {
Unlocked,
WriteLock,
ReadLock,
};
 
const Queue = std.atomic.Queue(anyframe);
 
const global_event_loop = Loop.instance orelse
@compileError("std.event.RwLock currently only works with event-based I/O");
 
pub const HeldRead = struct {
lock: *RwLock,
 
pub fn release(self: HeldRead) void {
// If other readers still hold the lock, we're done.
if (@atomicRmw(usize, &self.lock.reader_lock_count, .Sub, 1, .SeqCst) != 1) {
return;
}
 
@atomicStore(bool, &self.lock.reader_queue_empty, true, .SeqCst);
if (@cmpxchgStrong(State, &self.lock.shared_state, .ReadLock, .Unlocked, .SeqCst, .SeqCst) != null) {
// Didn't unlock. Someone else's problem.
return;
}
 
self.lock.commonPostUnlock();
}
};
 
pub const HeldWrite = struct {
lock: *RwLock,
 
pub fn release(self: HeldWrite) void {
// See if we can leave it locked for writing, and pass the lock to the next writer
// in the queue to grab the lock.
if (self.lock.writer_queue.get()) |node| {
global_event_loop.onNextTick(node);
return;
}
 
// We need to release the write lock. Check if any readers are waiting to grab the lock.
if (!@atomicLoad(bool, &self.lock.reader_queue_empty, .SeqCst)) {
// Switch to a read lock.
@atomicStore(State, &self.lock.shared_state, .ReadLock, .SeqCst);
while (self.lock.reader_queue.get()) |node| {
global_event_loop.onNextTick(node);
}
return;
}
 
@atomicStore(bool, &self.lock.writer_queue_empty, true, .SeqCst);
@atomicStore(State, &self.lock.shared_state, .Unlocked, .SeqCst);
 
self.lock.commonPostUnlock();
}
};
 
pub fn init() RwLock {
return .{
.shared_state = .Unlocked,
.writer_queue = Queue.init(),
.writer_queue_empty = true,
.reader_queue = Queue.init(),
.reader_queue_empty = true,
.reader_lock_count = 0,
};
}
 
/// Must be called when not locked. Not thread safe.
/// All calls to acquire() and release() must complete before calling deinit().
pub fn deinit(self: *RwLock) void {
assert(self.shared_state == .Unlocked);
while (self.writer_queue.get()) |node| resume node.data;
while (self.reader_queue.get()) |node| resume node.data;
}
 
pub fn acquireRead(self: *RwLock) callconv(.Async) HeldRead {
_ = @atomicRmw(usize, &self.reader_lock_count, .Add, 1, .SeqCst);
 
suspend {
var my_tick_node = Loop.NextTickNode{
.data = @frame(),
.prev = undefined,
.next = undefined,
};
 
self.reader_queue.put(&my_tick_node);
 
// At this point, we are in the reader_queue, so we might have already been resumed.
 
// We set this bit so that later we can rely on the fact, that if reader_queue_empty == true,
// some actor will attempt to grab the lock.
@atomicStore(bool, &self.reader_queue_empty, false, .SeqCst);
 
// Here we don't care if we are the one to do the locking or if it was already locked for reading.
const have_read_lock = if (@cmpxchgStrong(State, &self.shared_state, .Unlocked, .ReadLock, .SeqCst, .SeqCst)) |old_state| old_state == .ReadLock else true;
if (have_read_lock) {
// Give out all the read locks.
if (self.reader_queue.get()) |first_node| {
while (self.reader_queue.get()) |node| {
global_event_loop.onNextTick(node);
}
resume first_node.data;
}
}
}
return HeldRead{ .lock = self };
}
 
pub fn acquireWrite(self: *RwLock) callconv(.Async) HeldWrite {
suspend {
var my_tick_node = Loop.NextTickNode{
.data = @frame(),
.prev = undefined,
.next = undefined,
};
 
self.writer_queue.put(&my_tick_node);
 
// At this point, we are in the writer_queue, so we might have already been resumed.
 
// We set this bit so that later we can rely on the fact, that if writer_queue_empty == true,
// some actor will attempt to grab the lock.
@atomicStore(bool, &self.writer_queue_empty, false, .SeqCst);
 
// Here we must be the one to acquire the write lock. It cannot already be locked.
if (@cmpxchgStrong(State, &self.shared_state, .Unlocked, .WriteLock, .SeqCst, .SeqCst) == null) {
// We now have a write lock.
if (self.writer_queue.get()) |node| {
// Whether this node is us or someone else, we tail resume it.
resume node.data;
}
}
}
return HeldWrite{ .lock = self };
}
 
fn commonPostUnlock(self: *RwLock) void {
while (true) {
// There might be a writer_queue item or a reader_queue item
// If we check and both are empty, we can be done, because the other actors will try to
// obtain the lock.
// But if there's a writer_queue item or a reader_queue item,
// we are the actor which must loop and attempt to grab the lock again.
if (!@atomicLoad(bool, &self.writer_queue_empty, .SeqCst)) {
if (@cmpxchgStrong(State, &self.shared_state, .Unlocked, .WriteLock, .SeqCst, .SeqCst) != null) {
// We did not obtain the lock. Great, the queues are someone else's problem.
return;
}
// If there's an item in the writer queue, give them the lock, and we're done.
if (self.writer_queue.get()) |node| {
global_event_loop.onNextTick(node);
return;
}
// Release the lock again.
@atomicStore(bool, &self.writer_queue_empty, true, .SeqCst);
@atomicStore(State, &self.shared_state, .Unlocked, .SeqCst);
continue;
}
 
if (!@atomicLoad(bool, &self.reader_queue_empty, .SeqCst)) {
if (@cmpxchgStrong(State, &self.shared_state, .Unlocked, .ReadLock, .SeqCst, .SeqCst) != null) {
// We did not obtain the lock. Great, the queues are someone else's problem.
return;
}
// If there are any items in the reader queue, give out all the reader locks, and we're done.
if (self.reader_queue.get()) |first_node| {
global_event_loop.onNextTick(first_node);
while (self.reader_queue.get()) |node| {
global_event_loop.onNextTick(node);
}
return;
}
// Release the lock again.
@atomicStore(bool, &self.reader_queue_empty, true, .SeqCst);
if (@cmpxchgStrong(State, &self.shared_state, .ReadLock, .Unlocked, .SeqCst, .SeqCst) != null) {
// Didn't unlock. Someone else's problem.
return;
}
continue;
}
return;
}
}
};
 
test "std.event.RwLock" {
// https://github.com/ziglang/zig/issues/2377
if (true) return error.SkipZigTest;
 
// https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
 
// TODO provide a way to run tests in evented I/O mode
if (!std.io.is_async) return error.SkipZigTest;
 
var lock = RwLock.init();
defer lock.deinit();
 
_ = testLock(std.heap.page_allocator, &lock);
 
const expected_result = [1]i32{shared_it_count * @as(i32, @intCast(shared_test_data.len))} ** shared_test_data.len;
try testing.expectEqualSlices(i32, expected_result, shared_test_data);
}
fn testLock(allocator: Allocator, lock: *RwLock) callconv(.Async) void {
var read_nodes: [100]Loop.NextTickNode = undefined;
for (&read_nodes) |*read_node| {
const frame = allocator.create(@Frame(readRunner)) catch @panic("memory");
read_node.data = frame;
frame.* = async readRunner(lock);
Loop.instance.?.onNextTick(read_node);
}
 
var write_nodes: [shared_it_count]Loop.NextTickNode = undefined;
for (&write_nodes) |*write_node| {
const frame = allocator.create(@Frame(writeRunner)) catch @panic("memory");
write_node.data = frame;
frame.* = async writeRunner(lock);
Loop.instance.?.onNextTick(write_node);
}
 
for (&write_nodes) |*write_node| {
const casted = @as(*const @Frame(writeRunner), @ptrCast(write_node.data));
await casted;
allocator.destroy(casted);
}
for (&read_nodes) |*read_node| {
const casted = @as(*const @Frame(readRunner), @ptrCast(read_node.data));
await casted;
allocator.destroy(casted);
}
}
 
const shared_it_count = 10;
var shared_test_data = [1]i32{0} ** 10;
var shared_test_index: usize = 0;
var shared_count: usize = 0;
fn writeRunner(lock: *RwLock) callconv(.Async) void {
suspend {} // resumed by onNextTick
 
var i: usize = 0;
while (i < shared_test_data.len) : (i += 1) {
std.time.sleep(100 * std.time.microsecond);
const lock_promise = async lock.acquireWrite();
const handle = await lock_promise;
defer handle.release();
 
shared_count += 1;
while (shared_test_index < shared_test_data.len) : (shared_test_index += 1) {
shared_test_data[shared_test_index] = shared_test_data[shared_test_index] + 1;
}
shared_test_index = 0;
}
}
fn readRunner(lock: *RwLock) callconv(.Async) void {
suspend {} // resumed by onNextTick
std.time.sleep(1);
 
var i: usize = 0;
while (i < shared_test_data.len) : (i += 1) {
const lock_promise = async lock.acquireRead();
const handle = await lock_promise;
defer handle.release();
 
try testing.expect(shared_test_index == 0);
try testing.expect(shared_test_data[i] == @as(i32, @intCast(shared_count)));
}
}
 
ev/null added: 231, removed: 4796, total 0
@@ -1,57 +0,0 @@
const std = @import("../std.zig");
const RwLock = std.event.RwLock;
 
/// Thread-safe async/await RW lock that protects one piece of data.
/// Functions which are waiting for the lock are suspended, and
/// are resumed when the lock is released, in order.
pub fn RwLocked(comptime T: type) type {
return struct {
lock: RwLock,
locked_data: T,
 
const Self = @This();
 
pub const HeldReadLock = struct {
value: *const T,
held: RwLock.HeldRead,
 
pub fn release(self: HeldReadLock) void {
self.held.release();
}
};
 
pub const HeldWriteLock = struct {
value: *T,
held: RwLock.HeldWrite,
 
pub fn release(self: HeldWriteLock) void {
self.held.release();
}
};
 
pub fn init(data: T) Self {
return Self{
.lock = RwLock.init(),
.locked_data = data,
};
}
 
pub fn deinit(self: *Self) void {
self.lock.deinit();
}
 
pub fn acquireRead(self: *Self) callconv(.Async) HeldReadLock {
return HeldReadLock{
.held = self.lock.acquireRead(),
.value = &self.locked_data,
};
}
 
pub fn acquireWrite(self: *Self) callconv(.Async) HeldWriteLock {
return HeldWriteLock{
.held = self.lock.acquireWrite(),
.value = &self.locked_data,
};
}
};
}
 
ev/null added: 231, removed: 4796, total 0
@@ -1,115 +0,0 @@
const std = @import("../std.zig");
const builtin = @import("builtin");
const Loop = std.event.Loop;
 
/// A WaitGroup keeps track and waits for a group of async tasks to finish.
/// Call `begin` when creating new tasks, and have tasks call `finish` when done.
/// You can provide a count for both operations to perform them in bulk.
/// Call `wait` to suspend until all tasks are completed.
/// Multiple waiters are supported.
///
/// WaitGroup is an instance of WaitGroupGeneric, which takes in a bitsize
/// for the internal counter. WaitGroup defaults to a `usize` counter.
/// It's also possible to define a max value for the counter so that
/// `begin` will return error.Overflow when the limit is reached, even
/// if the integer type has not has not overflowed.
/// By default `max_value` is set to std.math.maxInt(CounterType).
pub const WaitGroup = WaitGroupGeneric(@bitSizeOf(usize));
 
pub fn WaitGroupGeneric(comptime counter_size: u16) type {
const CounterType = std.meta.Int(.unsigned, counter_size);
 
const global_event_loop = Loop.instance orelse
@compileError("std.event.WaitGroup currently only works with event-based I/O");
 
return struct {
counter: CounterType = 0,
max_counter: CounterType = std.math.maxInt(CounterType),
mutex: std.Thread.Mutex = .{},
waiters: ?*Waiter = null,
const Waiter = struct {
next: ?*Waiter,
tail: *Waiter,
node: Loop.NextTickNode,
};
 
const Self = @This();
pub fn begin(self: *Self, count: CounterType) error{Overflow}!void {
self.mutex.lock();
defer self.mutex.unlock();
 
const new_counter = try std.math.add(CounterType, self.counter, count);
if (new_counter > self.max_counter) return error.Overflow;
self.counter = new_counter;
}
 
pub fn finish(self: *Self, count: CounterType) void {
var waiters = blk: {
self.mutex.lock();
defer self.mutex.unlock();
self.counter = std.math.sub(CounterType, self.counter, count) catch unreachable;
if (self.counter == 0) {
const temp = self.waiters;
self.waiters = null;
break :blk temp;
}
break :blk null;
};
 
// We don't need to hold the lock to reschedule any potential waiter.
while (waiters) |w| {
const temp_w = w;
waiters = w.next;
global_event_loop.onNextTick(&temp_w.node);
}
}
 
pub fn wait(self: *Self) void {
self.mutex.lock();
 
if (self.counter == 0) {
self.mutex.unlock();
return;
}
 
var self_waiter: Waiter = undefined;
self_waiter.node.data = @frame();
if (self.waiters) |head| {
head.tail.next = &self_waiter;
head.tail = &self_waiter;
} else {
self.waiters = &self_waiter;
self_waiter.tail = &self_waiter;
self_waiter.next = null;
}
suspend {
self.mutex.unlock();
}
}
};
}
 
test "basic WaitGroup usage" {
if (!std.io.is_async) return error.SkipZigTest;
 
// TODO https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
 
// TODO https://github.com/ziglang/zig/issues/3251
if (builtin.os.tag == .freebsd) return error.SkipZigTest;
 
var initial_wg = WaitGroup{};
var final_wg = WaitGroup{};
 
try initial_wg.begin(1);
try final_wg.begin(1);
var task_frame = async task(&initial_wg, &final_wg);
initial_wg.finish(1);
final_wg.wait();
await task_frame;
}
 
fn task(wg_i: *WaitGroup, wg_f: *WaitGroup) void {
wg_i.wait();
wg_f.finish(1);
}
 
lib/std/fs.zig added: 231, removed: 4796, total 0
@@ -31,8 +31,6 @@ pub const realpathW = os.realpathW;
pub const getAppDataDir = @import("fs/get_app_data_dir.zig").getAppDataDir;
pub const GetAppDataDirError = @import("fs/get_app_data_dir.zig").GetAppDataDirError;
 
pub const Watch = @import("fs/watch.zig").Watch;
 
/// This represents the maximum size of a UTF-8 encoded file path that the
/// operating system will accept. Paths, including those returned from file
/// system operations, may be longer than this length, but such paths cannot
@@ -86,13 +84,6 @@ pub const base64_encoder = base64.Base64Encoder.init(base64_alphabet, null);
/// Base64 decoder, replacing the standard `+/` with `-_` so that it can be used in a file name on any filesystem.
pub const base64_decoder = base64.Base64Decoder.init(base64_alphabet, null);
 
/// Whether or not async file system syscalls need a dedicated thread because the operating
/// system does not support non-blocking I/O on the file system.
pub const need_async_thread = std.io.is_async and switch (builtin.os.tag) {
.windows, .other => false,
else => true,
};
 
/// TODO remove the allocator requirement from this API
/// TODO move to Dir
pub fn atomicSymLink(allocator: Allocator, existing_path: []const u8, new_path: []const u8) !void {
@@ -231,17 +222,17 @@ pub fn renameW(old_dir: Dir, old_sub_path_w: []const u16, new_dir: Dir, new_sub_
/// On POSIX targets, this function is comptime-callable.
pub fn cwd() Dir {
if (builtin.os.tag == .windows) {
return Dir{ .fd = os.windows.peb().ProcessParameters.CurrentDirectory.Handle };
return .{ .fd = os.windows.peb().ProcessParameters.CurrentDirectory.Handle };
} else if (builtin.os.tag == .wasi) {
return std.options.wasiCwd();
return .{ .fd = std.options.wasiCwd() };
} else {
return Dir{ .fd = os.AT.FDCWD };
return .{ .fd = os.AT.FDCWD };
}
}
 
pub fn defaultWasiCwd() Dir {
pub fn defaultWasiCwd() std.os.wasi.fd_t {
// Expect the first preopen to be current working directory.
return .{ .fd = 3 };
return 3;
}
 
/// Opens a directory at the given path. The directory is a system resource that remains
@@ -641,5 +632,4 @@ test {
_ = &path;
_ = @import("fs/test.zig");
_ = @import("fs/get_app_data_dir.zig");
_ = @import("fs/watch.zig");
}
 
lib/std/fs/Dir.zig added: 231, removed: 4796, total 0
@@ -751,11 +751,7 @@ pub const OpenError = error{
} || posix.UnexpectedError;
 
pub fn close(self: *Dir) void {
if (fs.need_async_thread) {
std.event.Loop.instance.?.close(self.fd);
} else {
posix.close(self.fd);
}
posix.close(self.fd);
self.* = undefined;
}
 
@@ -837,10 +833,7 @@ pub fn openFileZ(self: Dir, sub_path: [*:0]const u8, flags: File.OpenFlags) File
.write_only => @as(u32, posix.O.WRONLY),
.read_write => @as(u32, posix.O.RDWR),
};
const fd = if (flags.intended_io_mode != .blocking)
try std.event.Loop.instance.?.openatZ(self.fd, sub_path, os_flags, 0)
else
try posix.openatZ(self.fd, sub_path, os_flags, 0);
const fd = try posix.openatZ(self.fd, sub_path, os_flags, 0);
errdefer posix.close(fd);
 
// WASI doesn't have posix.flock so we intetinally check OS prior to the inner if block
@@ -877,11 +870,7 @@ pub fn openFileZ(self: Dir, sub_path: [*:0]const u8, flags: File.OpenFlags) File
};
}
 
return File{
.handle = fd,
.capable_io_mode = .blocking,
.intended_io_mode = flags.intended_io_mode,
};
return File{ .handle = fd };
}
 
/// Same as `openFile` but Windows-only and the path parameter is
@@ -895,10 +884,7 @@ pub fn openFileW(self: Dir, sub_path_w: []const u16, flags: File.OpenFlags) File
(if (flags.isRead()) @as(u32, w.GENERIC_READ) else 0) |
(if (flags.isWrite()) @as(u32, w.GENERIC_WRITE) else 0),
.creation = w.FILE_OPEN,
.io_mode = flags.intended_io_mode,
}),
.capable_io_mode = std.io.default_mode,
.intended_io_mode = flags.intended_io_mode,
};
errdefer file.close();
var io: w.IO_STATUS_BLOCK = undefined;
@@ -994,10 +980,7 @@ pub fn createFileZ(self: Dir, sub_path_c: [*:0]const u8, flags: File.CreateFlags
(if (flags.truncate) @as(u32, posix.O.TRUNC) else 0) |
(if (flags.read) @as(u32, posix.O.RDWR) else posix.O.WRONLY) |
(if (flags.exclusive) @as(u32, posix.O.EXCL) else 0);
const fd = if (flags.intended_io_mode != .blocking)
try std.event.Loop.instance.?.openatZ(self.fd, sub_path_c, os_flags, flags.mode)
else
try posix.openatZ(self.fd, sub_path_c, os_flags, flags.mode);
const fd = try posix.openatZ(self.fd, sub_path_c, os_flags, flags.mode);
errdefer posix.close(fd);
 
// WASI doesn't have posix.flock so we intetinally check OS prior to the inner if block
@@ -1034,11 +1017,7 @@ pub fn createFileZ(self: Dir, sub_path_c: [*:0]const u8, flags: File.CreateFlags
};
}
 
return File{
.handle = fd,
.capable_io_mode = .blocking,
.intended_io_mode = flags.intended_io_mode,
};
return File{ .handle = fd };
}
 
/// Same as `createFile` but Windows-only and the path parameter is
@@ -1056,10 +1035,7 @@ pub fn createFileW(self: Dir, sub_path_w: []const u16, flags: File.CreateFlags)
@as(u32, w.FILE_OVERWRITE_IF)
else
@as(u32, w.FILE_OPEN_IF),
.io_mode = flags.intended_io_mode,
}),
.capable_io_mode = std.io.default_mode,
.intended_io_mode = flags.intended_io_mode,
};
errdefer file.close();
var io: w.IO_STATUS_BLOCK = undefined;
@@ -1276,7 +1252,6 @@ pub fn realpathW(self: Dir, pathname: []const u16, out_buffer: []u8) ![]u8 {
.access_mask = access_mask,
.share_access = share_access,
.creation = creation,
.io_mode = .blocking,
.filter = .any,
}) catch |err| switch (err) {
error.WouldBlock => unreachable,
@@ -1449,11 +1424,7 @@ pub fn openDirW(self: Dir, sub_path_w: [*:0]const u16, args: OpenDirOptions) Ope
 
/// `flags` must contain `posix.O.DIRECTORY`.
fn openDirFlagsZ(self: Dir, sub_path_c: [*:0]const u8, flags: u32) OpenError!Dir {
const result = if (fs.need_async_thread)
std.event.Loop.instance.?.openatZ(self.fd, sub_path_c, flags, 0)
else
posix.openatZ(self.fd, sub_path_c, flags, 0);
const fd = result catch |err| switch (err) {
const fd = posix.openatZ(self.fd, sub_path_c, flags, 0) catch |err| switch (err) {
error.FileTooBig => unreachable, // can't happen for directories
error.IsDir => unreachable, // we're providing O.DIRECTORY
error.NoSpaceLeft => unreachable, // not providing O.CREAT
@@ -2270,10 +2241,7 @@ pub fn accessZ(self: Dir, sub_path: [*:0]const u8, flags: File.OpenFlags) Access
.write_only => @as(u32, posix.W_OK),
.read_write => @as(u32, posix.R_OK | posix.W_OK),
};
const result = if (fs.need_async_thread and flags.intended_io_mode != .blocking)
std.event.Loop.instance.?.faccessatZ(self.fd, sub_path, os_mode, 0)
else
posix.faccessatZ(self.fd, sub_path, os_mode, 0);
const result = posix.faccessatZ(self.fd, sub_path, os_mode, 0);
return result;
}
 
@@ -2457,10 +2425,7 @@ pub const Stat = File.Stat;
pub const StatError = File.StatError;
 
pub fn stat(self: Dir) StatError!Stat {
const file: File = .{
.handle = self.fd,
.capable_io_mode = .blocking,
};
const file: File = .{ .handle = self.fd };
return file.stat();
}
 
@@ -2496,10 +2461,7 @@ pub const ChmodError = File.ChmodError;
/// of the directory. Additionally, the directory must have been opened
/// with `OpenDirOptions{ .iterate = true }`.
pub fn chmod(self: Dir, new_mode: File.Mode) ChmodError!void {
const file: File = .{
.handle = self.fd,
.capable_io_mode = .blocking,
};
const file: File = .{ .handle = self.fd };
try file.chmod(new_mode);
}
 
@@ -2510,10 +2472,7 @@ pub fn chmod(self: Dir, new_mode: File.Mode) ChmodError!void {
/// must have been opened with `OpenDirOptions{ .iterate = true }`. If the
/// owner or group is specified as `null`, the ID is not changed.
pub fn chown(self: Dir, owner: ?File.Uid, group: ?File.Gid) ChownError!void {
const file: File = .{
.handle = self.fd,
.capable_io_mode = .blocking,
};
const file: File = .{ .handle = self.fd };
try file.chown(owner, group);
}
 
@@ -2525,10 +2484,7 @@ pub const SetPermissionsError = File.SetPermissionsError;
/// Sets permissions according to the provided `Permissions` struct.
/// This method is *NOT* available on WASI
pub fn setPermissions(self: Dir, permissions: Permissions) SetPermissionsError!void {
const file: File = .{
.handle = self.fd,
.capable_io_mode = .blocking,
};
const file: File = .{ .handle = self.fd };
try file.setPermissions(permissions);
}
 
@@ -2537,10 +2493,7 @@ pub const MetadataError = File.MetadataError;
 
/// Returns a `Metadata` struct, representing the permissions on the directory
pub fn metadata(self: Dir) MetadataError!Metadata {
const file: File = .{
.handle = self.fd,
.capable_io_mode = .blocking,
};
const file: File = .{ .handle = self.fd };
return try file.metadata();
}
 
 
lib/std/fs/File.zig added: 231, removed: 4796, total 0
@@ -1,20 +1,6 @@
/// The OS-specific file descriptor or file handle.
handle: Handle,
 
/// On some systems, such as Linux, file system file descriptors are incapable
/// of non-blocking I/O. This forces us to perform asynchronous I/O on a dedicated thread,
/// to achieve non-blocking file-system I/O. To do this, `File` must be aware of whether
/// it is a file system file descriptor, or, more specifically, whether the I/O is always
/// blocking.
capable_io_mode: io.ModeOverride = io.default_mode,
 
/// Furthermore, even when `std.options.io_mode` is async, it is still sometimes desirable
/// to perform blocking I/O, although not by default. For example, when printing a
/// stack trace to stderr. This field tracks both by acting as an overriding I/O mode.
/// When not building in async I/O mode, the type only has the `.blocking` tag, making
/// it a zero-bit type.
intended_io_mode: io.ModeOverride = io.default_mode,
 
pub const Handle = posix.fd_t;
pub const Mode = posix.mode_t;
pub const INode = posix.ino_t;
@@ -108,16 +94,8 @@ pub const OpenFlags = struct {
/// Sets whether or not to wait until the file is locked to return. If set to true,
/// `error.WouldBlock` will be returned. Otherwise, the file will wait until the file
/// is available to proceed.
/// In async I/O mode, non-blocking at the OS level is
/// determined by `intended_io_mode`, and `true` means `error.WouldBlock` is returned,
/// and `false` means `error.WouldBlock` is handled by the event loop.
lock_nonblocking: bool = false,
 
/// Setting this to `.blocking` prevents `O.NONBLOCK` from being passed even
/// if `std.io.is_async`. It allows the use of `nosuspend` when calling functions
/// related to opening the file, reading, writing, and locking.
intended_io_mode: io.ModeOverride = io.default_mode,
 
/// Set this to allow the opened file to automatically become the
/// controlling TTY for the current process.
allow_ctty: bool = false,
@@ -172,19 +150,11 @@ pub const CreateFlags = struct {
/// Sets whether or not to wait until the file is locked to return. If set to true,
/// `error.WouldBlock` will be returned. Otherwise, the file will wait until the file
/// is available to proceed.
/// In async I/O mode, non-blocking at the OS level is
/// determined by `intended_io_mode`, and `true` means `error.WouldBlock` is returned,
/// and `false` means `error.WouldBlock` is handled by the event loop.
lock_nonblocking: bool = false,
 
/// For POSIX systems this is the file system mode the file will
/// be created with. On other systems this is always 0.
mode: Mode = default_mode,
 
/// Setting this to `.blocking` prevents `O.NONBLOCK` from being passed even
/// if `std.io.is_async`. It allows the use of `nosuspend` when calling functions
/// related to opening the file, reading, writing, and locking.
intended_io_mode: io.ModeOverride = io.default_mode,
};
 
/// Upon success, the stream is in an uninitialized state. To continue using it,
@@ -192,8 +162,6 @@ pub const CreateFlags = struct {
pub fn close(self: File) void {
if (is_windows) {
windows.CloseHandle(self.handle);
} else if (self.capable_io_mode != self.intended_io_mode) {
std.event.Loop.instance.?.close(self.handle);
} else {
posix.close(self.handle);
}
@@ -1013,14 +981,10 @@ pub const PReadError = posix.PReadError;
 
pub fn read(self: File, buffer: []u8) ReadError!usize {
if (is_windows) {
return windows.ReadFile(self.handle, buffer, null, self.intended_io_mode);
return windows.ReadFile(self.handle, buffer, null);
}
 
if (self.intended_io_mode == .blocking) {
return posix.read(self.handle, buffer);
} else {
return std.event.Loop.instance.?.read(self.handle, buffer, self.capable_io_mode != self.intended_io_mode);
}
return posix.read(self.handle, buffer);
}
 
/// Returns the number of bytes read. If the number read is smaller than `buffer.len`, it
@@ -1039,14 +1003,10 @@ pub fn readAll(self: File, buffer: []u8) ReadError!usize {
/// https://github.com/ziglang/zig/issues/12783
pub fn pread(self: File, buffer: []u8, offset: u64) PReadError!usize {
if (is_windows) {
return windows.ReadFile(self.handle, buffer, offset, self.intended_io_mode);
return windows.ReadFile(self.handle, buffer, offset);
}
 
if (self.intended_io_mode == .blocking) {
return posix.pread(self.handle, buffer, offset);
} else {
return std.event.Loop.instance.?.pread(self.handle, buffer, offset, self.capable_io_mode != self.intended_io_mode);
}
return posix.pread(self.handle, buffer, offset);
}
 
/// Returns the number of bytes read. If the number read is smaller than `buffer.len`, it
@@ -1069,14 +1029,10 @@ pub fn readv(self: File, iovecs: []const posix.iovec) ReadError!usize {
// TODO improve this to use ReadFileScatter
if (iovecs.len == 0) return @as(usize, 0);
const first = iovecs[0];
return windows.ReadFile(self.handle, first.iov_base[0..first.iov_len], null, self.intended_io_mode);
return windows.ReadFile(self.handle, first.iov_base[0..first.iov_len], null);
}
 
if (self.intended_io_mode == .blocking) {
return posix.readv(self.handle, iovecs);
} else {
return std.event.Loop.instance.?.readv(self.handle, iovecs, self.capable_io_mode != self.intended_io_mode);
}
return posix.readv(self.handle, iovecs);
}
 
/// Returns the number of bytes read. If the number read is smaller than the total bytes
@@ -1129,14 +1085,10 @@ pub fn preadv(self: File, iovecs: []const posix.iovec, offset: u64) PReadError!u
// TODO improve this to use ReadFileScatter
if (iovecs.len == 0) return @as(usize, 0);
const first = iovecs[0];
return windows.ReadFile(self.handle, first.iov_base[0..first.iov_len], offset, self.intended_io_mode);
return windows.ReadFile(self.handle, first.iov_base[0..first.iov_len], offset);
}
 
if (self.intended_io_mode == .blocking) {
return posix.preadv(self.handle, iovecs, offset);
} else {
return std.event.Loop.instance.?.preadv(self.handle, iovecs, offset, self.capable_io_mode != self.intended_io_mode);
}
return posix.preadv(self.handle, iovecs, offset);
}
 
/// Returns the number of bytes read. If the number read is smaller than the total bytes
@@ -1173,14 +1125,10 @@ pub const PWriteError = posix.PWriteError;
 
pub fn write(self: File, bytes: []const u8) WriteError!usize {
if (is_windows) {
return windows.WriteFile(self.handle, bytes, null, self.intended_io_mode);
return windows.WriteFile(self.handle, bytes, null);
}
 
if (self.intended_io_mode == .blocking) {
return posix.write(self.handle, bytes);
} else {
return std.event.Loop.instance.?.write(self.handle, bytes, self.capable_io_mode != self.intended_io_mode);
}
return posix.write(self.handle, bytes);
}
 
pub fn writeAll(self: File, bytes: []const u8) WriteError!void {
@@ -1194,14 +1142,10 @@ pub fn writeAll(self: File, bytes: []const u8) WriteError!void {
/// https://github.com/ziglang/zig/issues/12783
pub fn pwrite(self: File, bytes: []const u8, offset: u64) PWriteError!usize {
if (is_windows) {
return windows.WriteFile(self.handle, bytes, offset, self.intended_io_mode);
return windows.WriteFile(self.handle, bytes, offset);
}
 
if (self.intended_io_mode == .blocking) {
return posix.pwrite(self.handle, bytes, offset);
} else {
return std.event.Loop.instance.?.pwrite(self.handle, bytes, offset, self.capable_io_mode != self.intended_io_mode);
}
return posix.pwrite(self.handle, bytes, offset);
}
 
/// On Windows, this function currently does alter the file pointer.
@@ -1220,14 +1164,10 @@ pub fn writev(self: File, iovecs: []const posix.iovec_const) WriteError!usize {
// TODO improve this to use WriteFileScatter
if (iovecs.len == 0) return @as(usize, 0);
const first = iovecs[0];
return windows.WriteFile(self.handle, first.iov_base[0..first.iov_len], null, self.intended_io_mode);
return windows.WriteFile(self.handle, first.iov_base[0..first.iov_len], null);
}
 
if (self.intended_io_mode == .blocking) {
return posix.writev(self.handle, iovecs);
} else {
return std.event.Loop.instance.?.writev(self.handle, iovecs, self.capable_io_mode != self.intended_io_mode);
}
return posix.writev(self.handle, iovecs);
}
 
/// The `iovecs` parameter is mutable because:
@@ -1271,14 +1211,10 @@ pub fn pwritev(self: File, iovecs: []posix.iovec_const, offset: u64) PWriteError
// TODO improve this to use WriteFileScatter
if (iovecs.len == 0) return @as(usize, 0);
const first = iovecs[0];
return windows.WriteFile(self.handle, first.iov_base[0..first.iov_len], offset, self.intended_io_mode);
return windows.WriteFile(self.handle, first.iov_base[0..first.iov_len], offset);
}
 
if (self.intended_io_mode == .blocking) {
return posix.pwritev(self.handle, iovecs, offset);
} else {
return std.event.Loop.instance.?.pwritev(self.handle, iovecs, offset, self.capable_io_mode != self.intended_io_mode);
}
return posix.pwritev(self.handle, iovecs, offset);
}
 
/// The `iovecs` parameter is mutable because this function needs to mutate the fields in
 
lib/std/fs/test.zig added: 231, removed: 4796, total 0
@@ -1508,11 +1508,6 @@ test "open file with exclusive and shared nonblocking lock" {
test "open file with exclusive lock twice, make sure second lock waits" {
if (builtin.single_threaded) return error.SkipZigTest;
 
if (std.io.is_async) {
// This test starts its own threads and is not compatible with async I/O.
return error.SkipZigTest;
}
 
try testWithAllSupportedPathTypes(struct {
fn impl(ctx: *TestContext) !void {
const filename = try ctx.transformPath("file_lock_test.txt");
 
ev/null added: 231, removed: 4796, total 0
@@ -1,719 +0,0 @@
const std = @import("std");
const builtin = @import("builtin");
const event = std.event;
const assert = std.debug.assert;
const testing = std.testing;
const os = std.os;
const mem = std.mem;
const windows = os.windows;
const Loop = event.Loop;
const fd_t = os.fd_t;
const File = std.fs.File;
const Allocator = mem.Allocator;
 
const global_event_loop = Loop.instance orelse
@compileError("std.fs.Watch currently only works with event-based I/O");
 
const WatchEventId = enum {
CloseWrite,
Delete,
};
 
const WatchEventError = error{
UserResourceLimitReached,
SystemResources,
AccessDenied,
Unexpected, // TODO remove this possibility
};
 
pub fn Watch(comptime V: type) type {
return struct {
channel: event.Channel(Event.Error!Event),
os_data: OsData,
allocator: Allocator,
 
const OsData = switch (builtin.os.tag) {
// TODO https://github.com/ziglang/zig/issues/3778
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => KqOsData,
.linux => LinuxOsData,
.windows => WindowsOsData,
 
else => @compileError("Unsupported OS"),
};
 
const KqOsData = struct {
table_lock: event.Lock,
file_table: FileTable,
 
const FileTable = std.StringHashMapUnmanaged(*Put);
const Put = struct {
putter_frame: @Frame(kqPutEvents),
cancelled: bool = false,
value: V,
};
};
 
const WindowsOsData = struct {
table_lock: event.Lock,
dir_table: DirTable,
cancelled: bool = false,
 
const DirTable = std.StringHashMapUnmanaged(*Dir);
const FileTable = std.StringHashMapUnmanaged(V);
 
const Dir = struct {
putter_frame: @Frame(windowsDirReader),
file_table: FileTable,
dir_handle: os.windows.HANDLE,
};
};
 
const LinuxOsData = struct {
putter_frame: @Frame(linuxEventPutter),
inotify_fd: i32,
wd_table: WdTable,
table_lock: event.Lock,
cancelled: bool = false,
 
const WdTable = std.AutoHashMapUnmanaged(i32, Dir);
const FileTable = std.StringHashMapUnmanaged(V);
 
const Dir = struct {
dirname: []const u8,
file_table: FileTable,
};
};
 
const Self = @This();
 
pub const Event = struct {
id: Id,
data: V,
dirname: []const u8,
basename: []const u8,
 
pub const Id = WatchEventId;
pub const Error = WatchEventError;
};
 
pub fn init(allocator: Allocator, event_buf_count: usize) !*Self {
const self = try allocator.create(Self);
errdefer allocator.destroy(self);
 
switch (builtin.os.tag) {
.linux => {
const inotify_fd = try os.inotify_init1(os.linux.IN_NONBLOCK | os.linux.IN_CLOEXEC);
errdefer os.close(inotify_fd);
 
self.* = Self{
.allocator = allocator,
.channel = undefined,
.os_data = OsData{
.putter_frame = undefined,
.inotify_fd = inotify_fd,
.wd_table = OsData.WdTable.init(allocator),
.table_lock = event.Lock{},
},
};
 
const buf = try allocator.alloc(Event.Error!Event, event_buf_count);
self.channel.init(buf);
self.os_data.putter_frame = async self.linuxEventPutter();
return self;
},
 
.windows => {
self.* = Self{
.allocator = allocator,
.channel = undefined,
.os_data = OsData{
.table_lock = event.Lock{},
.dir_table = OsData.DirTable.init(allocator),
},
};
 
const buf = try allocator.alloc(Event.Error!Event, event_buf_count);
self.channel.init(buf);
return self;
},
 
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => {
self.* = Self{
.allocator = allocator,
.channel = undefined,
.os_data = OsData{
.table_lock = event.Lock{},
.file_table = OsData.FileTable.init(allocator),
},
};
 
const buf = try allocator.alloc(Event.Error!Event, event_buf_count);
self.channel.init(buf);
return self;
},
else => @compileError("Unsupported OS"),
}
}
 
pub fn deinit(self: *Self) void {
switch (builtin.os.tag) {
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => {
var it = self.os_data.file_table.iterator();
while (it.next()) |entry| {
const key = entry.key_ptr.*;
const value = entry.value_ptr.*;
value.cancelled = true;
// @TODO Close the fd here?
await value.putter_frame;
self.allocator.free(key);
self.allocator.destroy(value);
}
},
.linux => {
self.os_data.cancelled = true;
{
// Remove all directory watches linuxEventPutter will take care of
// cleaning up the memory and closing the inotify fd.
var dir_it = self.os_data.wd_table.keyIterator();
while (dir_it.next()) |wd_key| {
const rc = os.linux.inotify_rm_watch(self.os_data.inotify_fd, wd_key.*);
// Errno can only be EBADF, EINVAL if either the inotify fs or the wd are invalid
std.debug.assert(rc == 0);
}
}
await self.os_data.putter_frame;
},
.windows => {
self.os_data.cancelled = true;
var dir_it = self.os_data.dir_table.iterator();
while (dir_it.next()) |dir_entry| {
if (windows.kernel32.CancelIoEx(dir_entry.value.dir_handle, null) != 0) {
// We canceled the pending ReadDirectoryChangesW operation, but our
// frame is still suspending, now waiting indefinitely.
// Thus, it is safe to resume it ourslves
resume dir_entry.value.putter_frame;
} else {
std.debug.assert(windows.kernel32.GetLastError() == .NOT_FOUND);
// We are at another suspend point, we can await safely for the
// function to exit the loop
await dir_entry.value.putter_frame;
}
 
self.allocator.free(dir_entry.key_ptr.*);
var file_it = dir_entry.value.file_table.keyIterator();
while (file_it.next()) |file_entry| {
self.allocator.free(file_entry.*);
}
dir_entry.value.file_table.deinit(self.allocator);
self.allocator.destroy(dir_entry.value_ptr.*);
}
self.os_data.dir_table.deinit(self.allocator);
},
else => @compileError("Unsupported OS"),
}
self.allocator.free(self.channel.buffer_nodes);
self.channel.deinit();
self.allocator.destroy(self);
}
 
pub fn addFile(self: *Self, file_path: []const u8, value: V) !?V {
switch (builtin.os.tag) {
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => return addFileKEvent(self, file_path, value),
.linux => return addFileLinux(self, file_path, value),
.windows => return addFileWindows(self, file_path, value),
else => @compileError("Unsupported OS"),
}
}
 
fn addFileKEvent(self: *Self, file_path: []const u8, value: V) !?V {
var realpath_buf: [std.fs.MAX_PATH_BYTES]u8 = undefined;
const realpath = try os.realpath(file_path, &realpath_buf);
 
const held = self.os_data.table_lock.acquire();
defer held.release();
 
const gop = try self.os_data.file_table.getOrPut(self.allocator, realpath);
errdefer assert(self.os_data.file_table.remove(realpath));
if (gop.found_existing) {
const prev_value = gop.value_ptr.value;
gop.value_ptr.value = value;
return prev_value;
}
 
gop.key_ptr.* = try self.allocator.dupe(u8, realpath);
errdefer self.allocator.free(gop.key_ptr.*);
gop.value_ptr.* = try self.allocator.create(OsData.Put);
errdefer self.allocator.destroy(gop.value_ptr.*);
gop.value_ptr.* = .{
.putter_frame = undefined,
.value = value,
};
 
// @TODO Can I close this fd and get an error from bsdWaitKev?
const flags = if (comptime builtin.target.isDarwin()) os.O.SYMLINK | os.O.EVTONLY else 0;
const fd = try os.open(realpath, flags, 0);
gop.value_ptr.putter_frame = async self.kqPutEvents(fd, gop.key_ptr.*, gop.value_ptr.*);
return null;
}
 
fn kqPutEvents(self: *Self, fd: os.fd_t, file_path: []const u8, put: *OsData.Put) void {
global_event_loop.beginOneEvent();
defer {
global_event_loop.finishOneEvent();
// @TODO: Remove this if we force close otherwise
os.close(fd);
}
 
// We need to manually do a bsdWaitKev to access the fflags.
var resume_node = event.Loop.ResumeNode.Basic{
.base = .{
.id = .Basic,
.handle = @frame(),
.overlapped = event.Loop.ResumeNode.overlapped_init,
},
.kev = undefined,
};
 
var kevs = [1]os.Kevent{undefined};
const kev = &kevs[0];
 
while (!put.cancelled) {
kev.* = os.Kevent{
.ident = @as(usize, @intCast(fd)),
.filter = os.EVFILT_VNODE,
.flags = os.EV_ADD | os.EV_ENABLE | os.EV_CLEAR | os.EV_ONESHOT |
os.NOTE_WRITE | os.NOTE_DELETE | os.NOTE_REVOKE,
.fflags = 0,
.data = 0,
.udata = @intFromPtr(&resume_node.base),
};
suspend {
global_event_loop.beginOneEvent();
errdefer global_event_loop.finishOneEvent();
 
const empty_kevs = &[0]os.Kevent{};
_ = os.kevent(global_event_loop.os_data.kqfd, &kevs, empty_kevs, null) catch |err| switch (err) {
error.EventNotFound,
error.ProcessNotFound,
error.Overflow,
=> unreachable,
error.AccessDenied, error.SystemResources => |e| {
self.channel.put(e);
continue;
},
};
}
 
if (kev.flags & os.EV_ERROR != 0) {
self.channel.put(os.unexpectedErrno(os.errno(kev.data)));
continue;
}
 
if (kev.fflags & os.NOTE_DELETE != 0 or kev.fflags & os.NOTE_REVOKE != 0) {
self.channel.put(Self.Event{
.id = .Delete,
.data = put.value,
.dirname = std.fs.path.dirname(file_path) orelse "/",
.basename = std.fs.path.basename(file_path),
});
} else if (kev.fflags & os.NOTE_WRITE != 0) {
self.channel.put(Self.Event{
.id = .CloseWrite,
.data = put.value,
.dirname = std.fs.path.dirname(file_path) orelse "/",
.basename = std.fs.path.basename(file_path),
});
}
}
}
 
fn addFileLinux(self: *Self, file_path: []const u8, value: V) !?V {
const dirname = std.fs.path.dirname(file_path) orelse if (file_path[0] == '/') "/" else ".";
const basename = std.fs.path.basename(file_path);
 
const wd = try os.inotify_add_watch(
self.os_data.inotify_fd,
dirname,
os.linux.IN_CLOSE_WRITE | os.linux.IN_ONLYDIR | os.linux.IN_DELETE | os.linux.IN_EXCL_UNLINK,
);
// wd is either a newly created watch or an existing one.
 
const held = self.os_data.table_lock.acquire();
defer held.release();
 
const gop = try self.os_data.wd_table.getOrPut(self.allocator, wd);
errdefer assert(self.os_data.wd_table.remove(wd));
if (!gop.found_existing) {
gop.value_ptr.* = OsData.Dir{
.dirname = try self.allocator.dupe(u8, dirname),
.file_table = OsData.FileTable.init(self.allocator),
};
}
 
const dir = gop.value_ptr;
const file_table_gop = try dir.file_table.getOrPut(self.allocator, basename);
errdefer assert(dir.file_table.remove(basename));
if (file_table_gop.found_existing) {
const prev_value = file_table_gop.value_ptr.*;
file_table_gop.value_ptr.* = value;
return prev_value;
} else {
file_table_gop.key_ptr.* = try self.allocator.dupe(u8, basename);
file_table_gop.value_ptr.* = value;
return null;
}
}
 
fn addFileWindows(self: *Self, file_path: []const u8, value: V) !?V {
// TODO we might need to convert dirname and basename to canonical file paths ("short"?)
const dirname = std.fs.path.dirname(file_path) orelse if (file_path[0] == '/') "/" else ".";
var dirname_path_space: windows.PathSpace = undefined;
dirname_path_space.len = try std.unicode.utf8ToUtf16Le(&dirname_path_space.data, dirname);
dirname_path_space.data[dirname_path_space.len] = 0;
 
const basename = std.fs.path.basename(file_path);
var basename_path_space: windows.PathSpace = undefined;
basename_path_space.len = try std.unicode.utf8ToUtf16Le(&basename_path_space.data, basename);
basename_path_space.data[basename_path_space.len] = 0;
 
const held = self.os_data.table_lock.acquire();
defer held.release();
 
const gop = try self.os_data.dir_table.getOrPut(self.allocator, dirname);
errdefer assert(self.os_data.dir_table.remove(dirname));
if (gop.found_existing) {
const dir = gop.value_ptr.*;
 
const file_gop = try dir.file_table.getOrPut(self.allocator, basename);
errdefer assert(dir.file_table.remove(basename));
if (file_gop.found_existing) {
const prev_value = file_gop.value_ptr.*;
file_gop.value_ptr.* = value;
return prev_value;
} else {
file_gop.value_ptr.* = value;
file_gop.key_ptr.* = try self.allocator.dupe(u8, basename);
return null;
}
} else {
const dir_handle = try windows.OpenFile(dirname_path_space.span(), .{
.dir = std.fs.cwd().fd,
.access_mask = windows.FILE_LIST_DIRECTORY,
.creation = windows.FILE_OPEN,
.io_mode = .evented,
.filter = .dir_only,
});
errdefer windows.CloseHandle(dir_handle);
 
const dir = try self.allocator.create(OsData.Dir);
errdefer self.allocator.destroy(dir);
 
gop.key_ptr.* = try self.allocator.dupe(u8, dirname);
errdefer self.allocator.free(gop.key_ptr.*);
 
dir.* = OsData.Dir{
.file_table = OsData.FileTable.init(self.allocator),
.putter_frame = undefined,
.dir_handle = dir_handle,
};
gop.value_ptr.* = dir;
try dir.file_table.put(self.allocator, try self.allocator.dupe(u8, basename), value);
dir.putter_frame = async self.windowsDirReader(dir, gop.key_ptr.*);
return null;
}
}
 
fn windowsDirReader(self: *Self, dir: *OsData.Dir, dirname: []const u8) void {
defer os.close(dir.dir_handle);
var resume_node = Loop.ResumeNode.Basic{
.base = Loop.ResumeNode{
.id = .Basic,
.handle = @frame(),
.overlapped = windows.OVERLAPPED{
.Internal = 0,
.InternalHigh = 0,
.DUMMYUNIONNAME = .{
.DUMMYSTRUCTNAME = .{
.Offset = 0,
.OffsetHigh = 0,
},
},
.hEvent = null,
},
},
};
 
var event_buf: [4096]u8 align(@alignOf(windows.FILE_NOTIFY_INFORMATION)) = undefined;
 
global_event_loop.beginOneEvent();
defer global_event_loop.finishOneEvent();
 
while (!self.os_data.cancelled) main_loop: {
suspend {
_ = windows.kernel32.ReadDirectoryChangesW(
dir.dir_handle,
&event_buf,
event_buf.len,
windows.FALSE, // watch subtree
windows.FILE_NOTIFY_CHANGE_FILE_NAME | windows.FILE_NOTIFY_CHANGE_DIR_NAME |
windows.FILE_NOTIFY_CHANGE_ATTRIBUTES | windows.FILE_NOTIFY_CHANGE_SIZE |
windows.FILE_NOTIFY_CHANGE_LAST_WRITE | windows.FILE_NOTIFY_CHANGE_LAST_ACCESS |
windows.FILE_NOTIFY_CHANGE_CREATION | windows.FILE_NOTIFY_CHANGE_SECURITY,
null, // number of bytes transferred (unused for async)
&resume_node.base.overlapped,
null, // completion routine - unused because we use IOCP
);
}
 
var bytes_transferred: windows.DWORD = undefined;
if (windows.kernel32.GetOverlappedResult(
dir.dir_handle,
&resume_node.base.overlapped,
&bytes_transferred,
windows.FALSE,
) == 0) {
const potential_error = windows.kernel32.GetLastError();
const err = switch (potential_error) {
.OPERATION_ABORTED, .IO_INCOMPLETE => err_blk: {
if (self.os_data.cancelled)
break :main_loop
else
break :err_blk windows.unexpectedError(potential_error);
},
else => |err| windows.unexpectedError(err),
};
self.channel.put(err);
} else {
var ptr: [*]u8 = &event_buf;
const end_ptr = ptr + bytes_transferred;
while (@intFromPtr(ptr) < @intFromPtr(end_ptr)) {
const ev = @as(*const windows.FILE_NOTIFY_INFORMATION, @ptrCast(ptr));
const emit = switch (ev.Action) {
windows.FILE_ACTION_REMOVED => WatchEventId.Delete,
windows.FILE_ACTION_MODIFIED => .CloseWrite,
else => null,
};
if (emit) |id| {
const basename_ptr = @as([*]u16, @ptrCast(ptr + @sizeOf(windows.FILE_NOTIFY_INFORMATION)));
const basename_utf16le = basename_ptr[0 .. ev.FileNameLength / 2];
var basename_data: [std.fs.MAX_PATH_BYTES]u8 = undefined;
const basename = basename_data[0 .. std.unicode.utf16leToUtf8(&basename_data, basename_utf16le) catch unreachable];
 
if (dir.file_table.getEntry(basename)) |entry| {
self.channel.put(Event{
.id = id,
.data = entry.value_ptr.*,
.dirname = dirname,
.basename = entry.key_ptr.*,
});
}
}
 
if (ev.NextEntryOffset == 0) break;
ptr = @alignCast(ptr + ev.NextEntryOffset);
}
}
}
}
 
pub fn removeFile(self: *Self, file_path: []const u8) !?V {
switch (builtin.os.tag) {
.linux => {
const dirname = std.fs.path.dirname(file_path) orelse if (file_path[0] == '/') "/" else ".";
const basename = std.fs.path.basename(file_path);
 
const held = self.os_data.table_lock.acquire();
defer held.release();
 
const dir = self.os_data.wd_table.get(dirname) orelse return null;
if (dir.file_table.fetchRemove(basename)) |file_entry| {
self.allocator.free(file_entry.key);
return file_entry.value;
}
return null;
},
.windows => {
const dirname = std.fs.path.dirname(file_path) orelse if (file_path[0] == '/') "/" else ".";
const basename = std.fs.path.basename(file_path);
 
const held = self.os_data.table_lock.acquire();
defer held.release();
 
const dir = self.os_data.dir_table.get(dirname) orelse return null;
if (dir.file_table.fetchRemove(basename)) |file_entry| {
self.allocator.free(file_entry.key);
return file_entry.value;
}
return null;
},
.macos, .freebsd, .netbsd, .dragonfly, .openbsd => {
var realpath_buf: [std.fs.MAX_PATH_BYTES]u8 = undefined;
const realpath = try os.realpath(file_path, &realpath_buf);
 
const held = self.os_data.table_lock.acquire();
defer held.release();
 
const entry = self.os_data.file_table.getEntry(realpath) orelse return null;
entry.value_ptr.cancelled = true;
// @TODO Close the fd here?
await entry.value_ptr.putter_frame;
self.allocator.free(entry.key_ptr.*);
self.allocator.destroy(entry.value_ptr.*);
 
assert(self.os_data.file_table.remove(realpath));
},
else => @compileError("Unsupported OS"),
}
}
 
fn linuxEventPutter(self: *Self) void {
global_event_loop.beginOneEvent();
 
defer {
std.debug.assert(self.os_data.wd_table.count() == 0);
self.os_data.wd_table.deinit(self.allocator);
os.close(self.os_data.inotify_fd);
self.allocator.free(self.channel.buffer_nodes);
self.channel.deinit();
global_event_loop.finishOneEvent();
}
 
var event_buf: [4096]u8 align(@alignOf(os.linux.inotify_event)) = undefined;
 
while (!self.os_data.cancelled) {
const bytes_read = global_event_loop.read(self.os_data.inotify_fd, &event_buf, false) catch unreachable;
 
var ptr: [*]u8 = &event_buf;
const end_ptr = ptr + bytes_read;
while (@intFromPtr(ptr) < @intFromPtr(end_ptr)) {
const ev = @as(*const os.linux.inotify_event, @ptrCast(ptr));
if (ev.mask & os.linux.IN_CLOSE_WRITE == os.linux.IN_CLOSE_WRITE) {
const basename_ptr = ptr + @sizeOf(os.linux.inotify_event);
const basename = std.mem.span(@as([*:0]u8, @ptrCast(basename_ptr)));
 
const dir = &self.os_data.wd_table.get(ev.wd).?;
if (dir.file_table.getEntry(basename)) |file_value| {
self.channel.put(Event{
.id = .CloseWrite,
.data = file_value.value_ptr.*,
.dirname = dir.dirname,
.basename = file_value.key_ptr.*,
});
}
} else if (ev.mask & os.linux.IN_IGNORED == os.linux.IN_IGNORED) {
// Directory watch was removed
const held = self.os_data.table_lock.acquire();
defer held.release();
if (self.os_data.wd_table.fetchRemove(ev.wd)) |wd_entry| {
var file_it = wd_entry.value.file_table.keyIterator();
while (file_it.next()) |file_entry| {
self.allocator.free(file_entry.*);
}
self.allocator.free(wd_entry.value.dirname);
wd_entry.value.file_table.deinit(self.allocator);
}
} else if (ev.mask & os.linux.IN_DELETE == os.linux.IN_DELETE) {
// File or directory was removed or deleted
const basename_ptr = ptr + @sizeOf(os.linux.inotify_event);
const basename = std.mem.span(@as([*:0]u8, @ptrCast(basename_ptr)));
 
const dir = &self.os_data.wd_table.get(ev.wd).?;
if (dir.file_table.getEntry(basename)) |file_value| {
self.channel.put(Event{
.id = .Delete,
.data = file_value.value_ptr.*,
.dirname = dir.dirname,
.basename = file_value.key_ptr.*,
});
}
}
 
ptr = @alignCast(ptr + @sizeOf(os.linux.inotify_event) + ev.len);
}
}
}
};
}
 
const test_tmp_dir = "std_event_fs_test";
 
test "write a file, watch it, write it again, delete it" {
if (!std.io.is_async) return error.SkipZigTest;
// TODO https://github.com/ziglang/zig/issues/1908
if (builtin.single_threaded) return error.SkipZigTest;
 
try std.fs.cwd().makePath(test_tmp_dir);
defer std.fs.cwd().deleteTree(test_tmp_dir) catch {};
 
return testWriteWatchWriteDelete(std.testing.allocator);
}
 
fn testWriteWatchWriteDelete(allocator: Allocator) !void {
const file_path = try std.fs.path.join(allocator, &[_][]const u8{ test_tmp_dir, "file.txt" });
defer allocator.free(file_path);
 
const contents =
\\line 1
\\line 2
;
const line2_offset = 7;
 
// first just write then read the file
try std.fs.cwd().writeFile(file_path, contents);
 
const read_contents = try std.fs.cwd().readFileAlloc(allocator, file_path, 1024 * 1024);
defer allocator.free(read_contents);
try testing.expectEqualSlices(u8, contents, read_contents);
 
// now watch the file
var watch = try Watch(void).init(allocator, 0);
defer watch.deinit();
 
try testing.expect((try watch.addFile(file_path, {})) == null);
 
var ev = async watch.channel.get();
var ev_consumed = false;
defer if (!ev_consumed) {
_ = await ev;
};
 
// overwrite line 2
const file = try std.fs.cwd().openFile(file_path, .{ .mode = .read_write });
{
defer file.close();
const write_contents = "lorem ipsum";
var iovec = [_]os.iovec_const{.{
.iov_base = write_contents,
.iov_len = write_contents.len,
}};
_ = try file.pwritevAll(&iovec, line2_offset);
}
 
switch ((try await ev).id) {
.CloseWrite => {
ev_consumed = true;
},
.Delete => @panic("wrong event"),
}
 
const contents_updated = try std.fs.cwd().readFileAlloc(allocator, file_path, 1024 * 1024);
defer allocator.free(contents_updated);
 
try testing.expectEqualSlices(u8,
\\line 1
\\lorem ipsum
, contents_updated);
 
ev = async watch.channel.get();
ev_consumed = false;
 
try std.fs.cwd().deleteFile(file_path);
switch ((try await ev).id) {
.Delete => {
ev_consumed = true;
},
.CloseWrite => @panic("wrong event"),
}
}
 
// TODO Test: Add another file watch, remove the old file watch, get an event in the new
 
lib/std/io.zig added: 231, removed: 4796, total 0
@@ -12,22 +12,6 @@ const meta = std.meta;
const File = std.fs.File;
const Allocator = std.mem.Allocator;
 
pub const Mode = enum {
/// I/O operates normally, waiting for the operating system syscalls to complete.
blocking,
 
/// I/O functions are generated async and rely on a global event loop. Event-based I/O.
evented,
};
 
const mode = std.options.io_mode;
pub const is_async = mode != .blocking;
 
/// This is an enum value to use for I/O mode at runtime, since it takes up zero bytes at runtime,
/// and makes expressions comptime-known when `is_async` is `false`.
pub const ModeOverride = if (is_async) Mode else enum { blocking };
pub const default_mode: ModeOverride = if (is_async) Mode.evented else .blocking;
 
fn getStdOutHandle() os.fd_t {
if (builtin.os.tag == .windows) {
if (builtin.zig_backend == .stage2_aarch64) {
@@ -44,14 +28,8 @@ fn getStdOutHandle() os.fd_t {
return os.STDOUT_FILENO;
}
 
/// TODO: async stdout on windows without a dedicated thread.
/// https://github.com/ziglang/zig/pull/4816#issuecomment-604521023
pub fn getStdOut() File {
return File{
.handle = getStdOutHandle(),
.capable_io_mode = .blocking,
.intended_io_mode = default_mode,
};
return File{ .handle = getStdOutHandle() };
}
 
fn getStdErrHandle() os.fd_t {
@@ -70,14 +48,8 @@ fn getStdErrHandle() os.fd_t {
return os.STDERR_FILENO;
}
 
/// This returns a `File` that is configured to block with every write, in order
/// to facilitate better debugging. This can be changed by modifying the `intended_io_mode` field.
pub fn getStdErr() File {
return File{
.handle = getStdErrHandle(),
.capable_io_mode = .blocking,
.intended_io_mode = .blocking,
};
return File{ .handle = getStdErrHandle() };
}
 
fn getStdInHandle() os.fd_t {
@@ -96,14 +68,8 @@ fn getStdInHandle() os.fd_t {
return os.STDIN_FILENO;
}
 
/// TODO: async stdin on windows without a dedicated thread.
/// https://github.com/ziglang/zig/pull/4816#issuecomment-604521023
pub fn getStdIn() File {
return File{
.handle = getStdInHandle(),
.capable_io_mode = .blocking,
.intended_io_mode = default_mode,
};
return File{ .handle = getStdInHandle() };
}
 
pub fn GenericReader(
 
lib/std/log.zig added: 231, removed: 4796, total 0
@@ -18,12 +18,12 @@
//! ```
//! const std = @import("std");
//!
//! pub const std_options = struct {
//! pub const std_options = .{
//! // Set the log level to info
//! pub const log_level = .info;
//! .log_level = .info,
//!
//! // Define logFn to override the std implementation
//! pub const logFn = myLogFn;
//! .logFn = myLogFn,
//! };
//!
//! pub fn myLogFn(
 
lib/std/net.zig added: 231, removed: 4796, total 0
@@ -651,7 +651,7 @@ pub const Ip6Address = extern struct {
};
 
pub fn connectUnixSocket(path: []const u8) !Stream {
const opt_non_block = if (std.io.is_async) os.SOCK.NONBLOCK else 0;
const opt_non_block = 0;
const sockfd = try os.socket(
os.AF.UNIX,
os.SOCK.STREAM | os.SOCK.CLOEXEC | opt_non_block,
@@ -660,17 +660,9 @@ pub fn connectUnixSocket(path: []const u8) !Stream {
errdefer os.closeSocket(sockfd);
 
var addr = try std.net.Address.initUnix(path);
try os.connect(sockfd, &addr.any, addr.getOsSockLen());
 
if (std.io.is_async) {
const loop = std.event.Loop.instance orelse return error.WouldBlock;
try loop.connect(sockfd, &addr.any, addr.getOsSockLen());
} else {
try os.connect(sockfd, &addr.any, addr.getOsSockLen());
}
 
return Stream{
.handle = sockfd,
};
return Stream{ .handle = sockfd };
}
 
fn if_nametoindex(name: []const u8) IPv6InterfaceError!u32 {
@@ -742,18 +734,13 @@ pub fn tcpConnectToHost(allocator: mem.Allocator, name: []const u8, port: u16) T
pub const TcpConnectToAddressError = std.os.SocketError || std.os.ConnectError;
 
pub fn tcpConnectToAddress(address: Address) TcpConnectToAddressError!Stream {
const nonblock = if (std.io.is_async) os.SOCK.NONBLOCK else 0;
const nonblock = 0;
const sock_flags = os.SOCK.STREAM | nonblock |
(if (builtin.target.os.tag == .windows) 0 else os.SOCK.CLOEXEC);
const sockfd = try os.socket(address.any.family, sock_flags, os.IPPROTO.TCP);
errdefer os.closeSocket(sockfd);
 
if (std.io.is_async) {
const loop = std.event.Loop.instance orelse return error.WouldBlock;
try loop.connect(sockfd, &address.any, address.getOsSockLen());
} else {
try os.connect(sockfd, &address.any, address.getOsSockLen());
}
try os.connect(sockfd, &address.any, address.getOsSockLen());
 
return Stream{ .handle = sockfd };
}
@@ -1618,11 +1605,7 @@ fn resMSendRc(
if (answers[i].len == 0) {
var j: usize = 0;
while (j < ns.len) : (j += 1) {
if (std.io.is_async) {
_ = std.event.Loop.instance.?.sendto(fd, queries[i], os.MSG.NOSIGNAL, &ns[j].any, sl) catch undefined;
} else {
_ = os.sendto(fd, queries[i], os.MSG.NOSIGNAL, &ns[j].any, sl) catch undefined;
}
_ = os.sendto(fd, queries[i], os.MSG.NOSIGNAL, &ns[j].any, sl) catch undefined;
}
}
}
@@ -1637,10 +1620,7 @@ fn resMSendRc(
 
while (true) {
var sl_copy = sl;
const rlen = if (std.io.is_async)
std.event.Loop.instance.?.recvfrom(fd, answer_bufs[next], 0, &sa.any, &sl_copy) catch break
else
os.recvfrom(fd, answer_bufs[next], 0, &sa.any, &sl_copy) catch break;
const rlen = os.recvfrom(fd, answer_bufs[next], 0, &sa.any, &sl_copy) catch break;
 
// Ignore non-identifiable packets
if (rlen < 4) continue;
@@ -1666,11 +1646,7 @@ fn resMSendRc(
0, 3 => {},
2 => if (servfail_retry != 0) {
servfail_retry -= 1;
if (std.io.is_async) {
_ = std.event.Loop.instance.?.sendto(fd, queries[i], os.MSG.NOSIGNAL, &ns[j].any, sl) catch undefined;
} else {
_ = os.sendto(fd, queries[i], os.MSG.NOSIGNAL, &ns[j].any, sl) catch undefined;
}
_ = os.sendto(fd, queries[i], os.MSG.NOSIGNAL, &ns[j].any, sl) catch undefined;
},
else => continue,
}
@@ -1778,14 +1754,10 @@ pub const Stream = struct {
 
pub fn read(self: Stream, buffer: []u8) ReadError!usize {
if (builtin.os.tag == .windows) {
return os.windows.ReadFile(self.handle, buffer, null, io.default_mode);
return os.windows.ReadFile(self.handle, buffer, null);
}
 
if (std.io.is_async) {
return std.event.Loop.instance.?.read(self.handle, buffer, false);
} else {
return os.read(self.handle, buffer);
}
return os.read(self.handle, buffer);
}
 
pub fn readv(s: Stream, iovecs: []const os.iovec) ReadError!usize {
@@ -1793,7 +1765,7 @@ pub const Stream = struct {
// TODO improve this to use ReadFileScatter
if (iovecs.len == 0) return @as(usize, 0);
const first = iovecs[0];
return os.windows.ReadFile(s.handle, first.iov_base[0..first.iov_len], null, io.default_mode);
return os.windows.ReadFile(s.handle, first.iov_base[0..first.iov_len], null);
}
 
return os.readv(s.handle, iovecs);
@@ -1827,14 +1799,10 @@ pub const Stream = struct {
/// use non-blocking I/O.
pub fn write(self: Stream, buffer: []const u8) WriteError!usize {
if (builtin.os.tag == .windows) {
return os.windows.WriteFile(self.handle, buffer, null, io.default_mode);
return os.windows.WriteFile(self.handle, buffer, null);
}
 
if (std.io.is_async) {
return std.event.Loop.instance.?.write(self.handle, buffer, false);
} else {
return os.write(self.handle, buffer);
}
return os.write(self.handle, buffer);
}
 
pub fn writeAll(self: Stream, bytes: []const u8) WriteError!void {
@@ -1847,15 +1815,7 @@ pub const Stream = struct {
/// See https://github.com/ziglang/zig/issues/7699
/// See equivalent function: `std.fs.File.writev`.
pub fn writev(self: Stream, iovecs: []const os.iovec_const) WriteError!usize {
if (std.io.is_async) {
// TODO improve to actually take advantage of writev syscall, if available.
if (iovecs.len == 0) return 0;
const first_buffer = iovecs[0].iov_base[0..iovecs[0].iov_len];
try self.write(first_buffer);
return first_buffer.len;
} else {
return os.writev(self.handle, iovecs);
}
return os.writev(self.handle, iovecs);
}
 
/// The `iovecs` parameter is mutable because this function needs to mutate the fields in
@@ -1927,7 +1887,7 @@ pub const StreamServer = struct {
}
 
pub fn listen(self: *StreamServer, address: Address) !void {
const nonblock = if (std.io.is_async) os.SOCK.NONBLOCK else 0;
const nonblock = 0;
const sock_flags = os.SOCK.STREAM | os.SOCK.CLOEXEC | nonblock;
var use_sock_flags: u32 = sock_flags;
if (self.force_nonblocking) use_sock_flags |= os.SOCK.NONBLOCK;
@@ -2016,14 +1976,7 @@ pub const StreamServer = struct {
pub fn accept(self: *StreamServer) AcceptError!Connection {
var accepted_addr: Address = undefined;
var adr_len: os.socklen_t = @sizeOf(Address);
const accept_result = blk: {
if (std.io.is_async) {
const loop = std.event.Loop.instance orelse return error.UnexpectedError;
break :blk loop.accept(self.sockfd.?, &accepted_addr.any, &adr_len, os.SOCK.CLOEXEC);
} else {
break :blk os.accept(self.sockfd.?, &accepted_addr.any, &adr_len, os.SOCK.CLOEXEC);
}
};
const accept_result = os.accept(self.sockfd.?, &accepted_addr.any, &adr_len, os.SOCK.CLOEXEC);
 
if (accept_result) |fd| {
return Connection{
 
lib/std/net/test.zig added: 231, removed: 4796, total 0
@@ -207,54 +207,6 @@ test "listen on a port, send bytes, receive bytes" {
try testing.expectEqualSlices(u8, "Hello world!", buf[0..n]);
}
 
test "listen on a port, send bytes, receive bytes, async-only" {
if (!std.io.is_async) return error.SkipZigTest;
 
if (builtin.os.tag != .linux and !builtin.os.tag.isDarwin()) {
// TODO build abstractions for other operating systems
return error.SkipZigTest;
}
 
// TODO doing this at comptime crashed the compiler
const localhost = try net.Address.parseIp("127.0.0.1", 0);
 
var server = net.StreamServer.init(net.StreamServer.Options{});
defer server.deinit();
try server.listen(localhost);
 
var server_frame = async testServer(&server);
var client_frame = async testClient(server.listen_address);
 
try await server_frame;
try await client_frame;
}
 
test "listen on ipv4 try connect on ipv6 then ipv4" {
if (!std.io.is_async) return error.SkipZigTest;
 
if (builtin.os.tag != .linux and !builtin.os.tag.isDarwin()) {
// TODO build abstractions for other operating systems
return error.SkipZigTest;
}
 
// TODO doing this at comptime crashed the compiler
const localhost = try net.Address.parseIp("127.0.0.1", 0);
 
var server = net.StreamServer.init(net.StreamServer.Options{});
defer server.deinit();
try server.listen(localhost);
 
var server_frame = async testServer(&server);
var client_frame = async testClientToHost(
testing.allocator,
"localhost",
server.listen_address.getPort(),
);
 
try await server_frame;
try await client_frame;
}
 
test "listen on an in use port" {
if (builtin.os.tag != .linux and comptime !builtin.os.tag.isDarwin()) {
// TODO build abstractions for other operating systems
 
lib/std/os.zig added: 231, removed: 4796, total 0
@@ -683,11 +683,7 @@ fn getRandomBytesDevURandom(buf: []u8) !void {
return error.NoDevice;
}
 
const file = std.fs.File{
.handle = fd,
.capable_io_mode = .blocking,
.intended_io_mode = .blocking,
};
const file = std.fs.File{ .handle = fd };
const stream = file.reader();
stream.readNoEof(buf) catch return error.Unexpected;
}
@@ -856,7 +852,7 @@ pub const ReadError = error{
pub fn read(fd: fd_t, buf: []u8) ReadError!usize {
if (buf.len == 0) return 0;
if (builtin.os.tag == .windows) {
return windows.ReadFile(fd, buf, null, std.io.default_mode);
return windows.ReadFile(fd, buf, null);
}
if (builtin.os.tag == .wasi and !builtin.link_libc) {
const iovs = [1]iovec{iovec{
@@ -995,7 +991,7 @@ pub const PReadError = ReadError || error{Unseekable};
pub fn pread(fd: fd_t, buf: []u8, offset: u64) PReadError!usize {
if (buf.len == 0) return 0;
if (builtin.os.tag == .windows) {
return windows.ReadFile(fd, buf, offset, std.io.default_mode);
return windows.ReadFile(fd, buf, offset);
}
if (builtin.os.tag == .wasi and !builtin.link_libc) {
const iovs = [1]iovec{iovec{
@@ -1257,7 +1253,7 @@ pub const WriteError = error{
pub fn write(fd: fd_t, bytes: []const u8) WriteError!usize {
if (bytes.len == 0) return 0;
if (builtin.os.tag == .windows) {
return windows.WriteFile(fd, bytes, null, std.io.default_mode);
return windows.WriteFile(fd, bytes, null);
}
 
if (builtin.os.tag == .wasi and !builtin.link_libc) {
@@ -1415,7 +1411,7 @@ pub const PWriteError = WriteError || error{Unseekable};
pub fn pwrite(fd: fd_t, bytes: []const u8, offset: u64) PWriteError!usize {
if (bytes.len == 0) return 0;
if (builtin.os.tag == .windows) {
return windows.WriteFile(fd, bytes, offset, std.io.default_mode);
return windows.WriteFile(fd, bytes, offset);
}
if (builtin.os.tag == .wasi and !builtin.link_libc) {
const ciovs = [1]iovec_const{iovec_const{
@@ -1711,7 +1707,6 @@ fn openOptionsFromFlagsWindows(flags: u32) windows.OpenFileOptions {
 
return .{
.access_mask = access_mask,
.io_mode = .blocking,
.creation = creation,
.filter = filter,
.follow_symlinks = follow_symlinks,
@@ -2797,7 +2792,6 @@ pub fn renameatW(
.dir = old_dir_fd,
.access_mask = windows.SYNCHRONIZE | windows.GENERIC_WRITE | windows.DELETE,
.creation = windows.FILE_OPEN,
.io_mode = .blocking,
.filter = .any, // This function is supposed to rename both files and directories.
.follow_symlinks = false,
}) catch |err| switch (err) {
@@ -2962,7 +2956,6 @@ pub fn mkdiratW(dir_fd: fd_t, sub_path_w: []const u16, mode: u32) MakeDirError!v
.dir = dir_fd,
.access_mask = windows.GENERIC_READ | windows.SYNCHRONIZE,
.creation = windows.FILE_CREATE,
.io_mode = .blocking,
.filter = .dir_only,
}) catch |err| switch (err) {
error.IsDir => unreachable,
@@ -3042,7 +3035,6 @@ pub fn mkdirW(dir_path_w: []const u16, mode: u32) MakeDirError!void {
.dir = std.fs.cwd().fd,
.access_mask = windows.GENERIC_READ | windows.SYNCHRONIZE,
.creation = windows.FILE_CREATE,
.io_mode = .blocking,
.filter = .dir_only,
}) catch |err| switch (err) {
error.IsDir => unreachable,
@@ -5440,7 +5432,6 @@ pub fn realpathW(pathname: []const u16, out_buffer: *[MAX_PATH_BYTES]u8) RealPat
.access_mask = access_mask,
.share_access = share_access,
.creation = creation,
.io_mode = .blocking,
.filter = .any,
}) catch |err| switch (err) {
error.WouldBlock => unreachable,
@@ -6404,12 +6395,7 @@ pub fn sendfile(
// manually, the same as ENOSYS.
break :sf;
},
.AGAIN => if (std.event.Loop.instance) |loop| {
loop.waitUntilFdWritable(out_fd);
continue;
} else {
return error.WouldBlock;
},
.AGAIN => return error.WouldBlock,
.IO => return error.InputOutput,
.PIPE => return error.BrokenPipe,
.NOMEM => return error.SystemResources,
@@ -6476,18 +6462,12 @@ pub fn sendfile(
 
.AGAIN => if (amt != 0) {
return amt;
} else if (std.event.Loop.instance) |loop| {
loop.waitUntilFdWritable(out_fd);
continue;
} else {
return error.WouldBlock;
},
 
.BUSY => if (amt != 0) {
return amt;
} else if (std.event.Loop.instance) |loop| {
loop.waitUntilFdReadable(in_fd);
continue;
} else {
return error.WouldBlock;
},
@@ -6550,9 +6530,6 @@ pub fn sendfile(
 
.AGAIN => if (amt != 0) {
return amt;
} else if (std.event.Loop.instance) |loop| {
loop.waitUntilFdWritable(out_fd);
continue;
} else {
return error.WouldBlock;
},
 
lib/std/os/windows.zig added: 231, removed: 4796, total 0
@@ -49,7 +49,6 @@ pub const OpenFileOptions = struct {
sa: ?*SECURITY_ATTRIBUTES = null,
share_access: ULONG = FILE_SHARE_WRITE | FILE_SHARE_READ | FILE_SHARE_DELETE,
creation: ULONG,
io_mode: std.io.ModeOverride,
/// If true, tries to open path as a directory.
/// Defaults to false.
filter: Filter = .file_only,
@@ -95,7 +94,7 @@ pub fn OpenFile(sub_path_w: []const u16, options: OpenFileOptions) OpenError!HAN
.SecurityQualityOfService = null,
};
var io: IO_STATUS_BLOCK = undefined;
const blocking_flag: ULONG = if (options.io_mode == .blocking) FILE_SYNCHRONOUS_IO_NONALERT else 0;
const blocking_flag: ULONG = FILE_SYNCHRONOUS_IO_NONALERT;
const file_or_dir_flag: ULONG = switch (options.filter) {
.file_only => FILE_NON_DIRECTORY_FILE,
.dir_only => FILE_DIRECTORY_FILE,
@@ -119,12 +118,7 @@ pub fn OpenFile(sub_path_w: []const u16, options: OpenFileOptions) OpenError!HAN
0,
);
switch (rc) {
.SUCCESS => {
if (std.io.is_async and options.io_mode == .evented) {
_ = CreateIoCompletionPort(result, std.event.Loop.instance.?.os_data.io_port, undefined, undefined) catch undefined;
}
return result;
},
.SUCCESS => return result,
.OBJECT_NAME_INVALID => unreachable,
.OBJECT_NAME_NOT_FOUND => return error.FileNotFound,
.OBJECT_PATH_NOT_FOUND => return error.FileNotFound,
@@ -457,81 +451,36 @@ pub const ReadFileError = error{
 
/// If buffer's length exceeds what a Windows DWORD integer can hold, it will be broken into
/// multiple non-atomic reads.
pub fn ReadFile(in_hFile: HANDLE, buffer: []u8, offset: ?u64, io_mode: std.io.ModeOverride) ReadFileError!usize {
if (io_mode != .blocking) {
const loop = std.event.Loop.instance.?;
// TODO make getting the file position non-blocking
const off = if (offset) |o| o else try SetFilePointerEx_CURRENT_get(in_hFile);
var resume_node = std.event.Loop.ResumeNode.Basic{
.base = .{
.id = .Basic,
.handle = @frame(),
.overlapped = OVERLAPPED{
.Internal = 0,
.InternalHigh = 0,
.DUMMYUNIONNAME = .{
.DUMMYSTRUCTNAME = .{
.Offset = @as(u32, @truncate(off)),
.OffsetHigh = @as(u32, @truncate(off >> 32)),
},
pub fn ReadFile(in_hFile: HANDLE, buffer: []u8, offset: ?u64) ReadFileError!usize {
while (true) {
const want_read_count: DWORD = @min(@as(DWORD, maxInt(DWORD)), buffer.len);
var amt_read: DWORD = undefined;
var overlapped_data: OVERLAPPED = undefined;
const overlapped: ?*OVERLAPPED = if (offset) |off| blk: {
overlapped_data = .{
.Internal = 0,
.InternalHigh = 0,
.DUMMYUNIONNAME = .{
.DUMMYSTRUCTNAME = .{
.Offset = @as(u32, @truncate(off)),
.OffsetHigh = @as(u32, @truncate(off >> 32)),
},
.hEvent = null,
},
},
};
loop.beginOneEvent();
suspend {
// TODO handle buffer bigger than DWORD can hold
_ = kernel32.ReadFile(in_hFile, buffer.ptr, @as(DWORD, @intCast(buffer.len)), null, &resume_node.base.overlapped);
}
var bytes_transferred: DWORD = undefined;
if (kernel32.GetOverlappedResult(in_hFile, &resume_node.base.overlapped, &bytes_transferred, FALSE) == 0) {
.hEvent = null,
};
break :blk &overlapped_data;
} else null;
if (kernel32.ReadFile(in_hFile, buffer.ptr, want_read_count, &amt_read, overlapped) == 0) {
switch (kernel32.GetLastError()) {
.IO_PENDING => unreachable,
.OPERATION_ABORTED => return error.OperationAborted,
.BROKEN_PIPE => return error.BrokenPipe,
.OPERATION_ABORTED => continue,
.BROKEN_PIPE => return 0,
.HANDLE_EOF => return 0,
.NETNAME_DELETED => return error.NetNameDeleted,
.HANDLE_EOF => return @as(usize, bytes_transferred),
else => |err| return unexpectedError(err),
}
}
if (offset == null) {
// TODO make setting the file position non-blocking
const new_off = off + bytes_transferred;
try SetFilePointerEx_CURRENT(in_hFile, @as(i64, @bitCast(new_off)));
}
return @as(usize, bytes_transferred);
} else {
while (true) {
const want_read_count: DWORD = @min(@as(DWORD, maxInt(DWORD)), buffer.len);
var amt_read: DWORD = undefined;
var overlapped_data: OVERLAPPED = undefined;
const overlapped: ?*OVERLAPPED = if (offset) |off| blk: {
overlapped_data = .{
.Internal = 0,
.InternalHigh = 0,
.DUMMYUNIONNAME = .{
.DUMMYSTRUCTNAME = .{
.Offset = @as(u32, @truncate(off)),
.OffsetHigh = @as(u32, @truncate(off >> 32)),
},
},
.hEvent = null,
};
break :blk &overlapped_data;
} else null;
if (kernel32.ReadFile(in_hFile, buffer.ptr, want_read_count, &amt_read, overlapped) == 0) {
switch (kernel32.GetLastError()) {
.IO_PENDING => unreachable,
.OPERATION_ABORTED => continue,
.BROKEN_PIPE => return 0,
.HANDLE_EOF => return 0,
.NETNAME_DELETED => return error.NetNameDeleted,
else => |err| return unexpectedError(err),
}
}
return amt_read;
}
return amt_read;
}
}
 
@@ -550,85 +499,38 @@ pub fn WriteFile(
handle: HANDLE,
bytes: []const u8,
offset: ?u64,
io_mode: std.io.ModeOverride,
) WriteFileError!usize {
if (std.event.Loop.instance != null and io_mode != .blocking) {
const loop = std.event.Loop.instance.?;
// TODO make getting the file position non-blocking
const off = if (offset) |o| o else try SetFilePointerEx_CURRENT_get(handle);
var resume_node = std.event.Loop.ResumeNode.Basic{
.base = .{
.id = .Basic,
.handle = @frame(),
.overlapped = OVERLAPPED{
.Internal = 0,
.InternalHigh = 0,
.DUMMYUNIONNAME = .{
.DUMMYSTRUCTNAME = .{
.Offset = @as(u32, @truncate(off)),
.OffsetHigh = @as(u32, @truncate(off >> 32)),
},
},
.hEvent = null,
var bytes_written: DWORD = undefined;
var overlapped_data: OVERLAPPED = undefined;
const overlapped: ?*OVERLAPPED = if (offset) |off| blk: {
overlapped_data = .{
.Internal = 0,
.InternalHigh = 0,
.DUMMYUNIONNAME = .{
.DUMMYSTRUCTNAME = .{
.Offset = @as(u32, @truncate(off)),
.OffsetHigh = @as(u32, @truncate(off >> 32)),
},
},
.hEvent = null,
};
loop.beginOneEvent();
suspend {
const adjusted_len = math.cast(DWORD, bytes.len) orelse maxInt(DWORD);
_ = kernel32.WriteFile(handle, bytes.ptr, adjusted_len, null, &resume_node.base.overlapped);
break :blk &overlapped_data;
} else null;
const adjusted_len = math.cast(u32, bytes.len) orelse maxInt(u32);
if (kernel32.WriteFile(handle, bytes.ptr, adjusted_len, &bytes_written, overlapped) == 0) {
switch (kernel32.GetLastError()) {
.INVALID_USER_BUFFER => return error.SystemResources,
.NOT_ENOUGH_MEMORY => return error.SystemResources,
.OPERATION_ABORTED => return error.OperationAborted,
.NOT_ENOUGH_QUOTA => return error.SystemResources,
.IO_PENDING => unreachable,
.BROKEN_PIPE => return error.BrokenPipe,
.INVALID_HANDLE => return error.NotOpenForWriting,
.LOCK_VIOLATION => return error.LockViolation,
else => |err| return unexpectedError(err),
}
var bytes_transferred: DWORD = undefined;
if (kernel32.GetOverlappedResult(handle, &resume_node.base.overlapped, &bytes_transferred, FALSE) == 0) {
switch (kernel32.GetLastError()) {
.IO_PENDING => unreachable,
.INVALID_USER_BUFFER => return error.SystemResources,
.NOT_ENOUGH_MEMORY => return error.SystemResources,
.OPERATION_ABORTED => return error.OperationAborted,
.NOT_ENOUGH_QUOTA => return error.SystemResources,
.BROKEN_PIPE => return error.BrokenPipe,
else => |err| return unexpectedError(err),
}
}
if (offset == null) {
// TODO make setting the file position non-blocking
const new_off = off + bytes_transferred;
try SetFilePointerEx_CURRENT(handle, @as(i64, @bitCast(new_off)));
}
return bytes_transferred;
} else {
var bytes_written: DWORD = undefined;
var overlapped_data: OVERLAPPED = undefined;
const overlapped: ?*OVERLAPPED = if (offset) |off| blk: {
overlapped_data = .{
.Internal = 0,
.InternalHigh = 0,
.DUMMYUNIONNAME = .{
.DUMMYSTRUCTNAME = .{
.Offset = @as(u32, @truncate(off)),
.OffsetHigh = @as(u32, @truncate(off >> 32)),
},
},
.hEvent = null,
};
break :blk &overlapped_data;
} else null;
const adjusted_len = math.cast(u32, bytes.len) orelse maxInt(u32);
if (kernel32.WriteFile(handle, bytes.ptr, adjusted_len, &bytes_written, overlapped) == 0) {
switch (kernel32.GetLastError()) {
.INVALID_USER_BUFFER => return error.SystemResources,
.NOT_ENOUGH_MEMORY => return error.SystemResources,
.OPERATION_ABORTED => return error.OperationAborted,
.NOT_ENOUGH_QUOTA => return error.SystemResources,
.IO_PENDING => unreachable,
.BROKEN_PIPE => return error.BrokenPipe,
.INVALID_HANDLE => return error.NotOpenForWriting,
.LOCK_VIOLATION => return error.LockViolation,
else => |err| return unexpectedError(err),
}
}
return bytes_written;
}
return bytes_written;
}
 
pub const SetCurrentDirectoryError = error{
@@ -732,7 +634,6 @@ pub fn CreateSymbolicLink(
.access_mask = SYNCHRONIZE | GENERIC_READ | GENERIC_WRITE,
.dir = dir,
.creation = FILE_CREATE,
.io_mode = .blocking,
.filter = if (is_directory) .dir_only else .file_only,
}) catch |err| switch (err) {
error.IsDir => return error.PathAlreadyExists,
@@ -1256,7 +1157,6 @@ pub fn GetFinalPathNameByHandle(
.access_mask = SYNCHRONIZE,
.share_access = FILE_SHARE_READ | FILE_SHARE_WRITE,
.creation = FILE_OPEN,
.io_mode = .blocking,
}) catch |err| switch (err) {
error.IsDir => unreachable,
error.NotDir => unreachable,
 
lib/std/pdb.zig added: 231, removed: 4796, total 0
@@ -513,7 +513,7 @@ pub const Pdb = struct {
};
 
pub fn init(allocator: mem.Allocator, path: []const u8) !Pdb {
const file = try fs.cwd().openFile(path, .{ .intended_io_mode = .blocking });
const file = try fs.cwd().openFile(path, .{});
errdefer file.close();
 
return Pdb{
 
lib/std/start.zig added: 231, removed: 4796, total 0
@@ -347,7 +347,7 @@ fn WinStartup() callconv(std.os.windows.WINAPI) noreturn {
 
std.debug.maybeEnableSegfaultHandler();
 
std.os.windows.ntdll.RtlExitUserProcess(initEventLoopAndCallMain());
std.os.windows.ntdll.RtlExitUserProcess(callMain());
}
 
fn wWinMainCRTStartup() callconv(std.os.windows.WINAPI) noreturn {
@@ -358,7 +358,7 @@ fn wWinMainCRTStartup() callconv(std.os.windows.WINAPI) noreturn {
 
std.debug.maybeEnableSegfaultHandler();
 
const result: std.os.windows.INT = initEventLoopAndCallWinMain();
const result: std.os.windows.INT = call_wWinMain();
std.os.windows.ntdll.RtlExitUserProcess(@as(std.os.windows.UINT, @bitCast(result)));
}
 
@@ -422,7 +422,7 @@ fn posixCallMainAndExit() callconv(.C) noreturn {
expandStackSize(phdrs);
}
 
std.os.exit(@call(.always_inline, callMainWithArgs, .{ argc, argv, envp }));
std.os.exit(callMainWithArgs(argc, argv, envp));
}
 
fn expandStackSize(phdrs: []elf.Phdr) void {
@@ -459,14 +459,14 @@ fn expandStackSize(phdrs: []elf.Phdr) void {
}
}
 
fn callMainWithArgs(argc: usize, argv: [*][*:0]u8, envp: [][*:0]u8) u8 {
inline fn callMainWithArgs(argc: usize, argv: [*][*:0]u8, envp: [][*:0]u8) u8 {
std.os.argv = argv[0..argc];
std.os.environ = envp;
 
std.debug.maybeEnableSegfaultHandler();
std.os.maybeIgnoreSigpipe();
 
return initEventLoopAndCallMain();
return callMain();
}
 
fn main(c_argc: c_int, c_argv: [*][*:0]c_char, c_envp: [*:null]?[*:0]c_char) callconv(.C) c_int {
@@ -481,92 +481,18 @@ fn main(c_argc: c_int, c_argv: [*][*:0]c_char, c_envp: [*:null]?[*:0]c_char) cal
expandStackSize(phdrs);
}
 
return @call(.always_inline, callMainWithArgs, .{ @as(usize, @intCast(c_argc)), @as([*][*:0]u8, @ptrCast(c_argv)), envp });
return callMainWithArgs(@as(usize, @intCast(c_argc)), @as([*][*:0]u8, @ptrCast(c_argv)), envp);
}
 
fn mainWithoutEnv(c_argc: c_int, c_argv: [*][*:0]c_char) callconv(.C) c_int {
std.os.argv = @as([*][*:0]u8, @ptrCast(c_argv))[0..@as(usize, @intCast(c_argc))];
return @call(.always_inline, callMain, .{});
return callMain();
}
 
// General error message for a malformed return type
const bad_main_ret = "expected return type of main to be 'void', '!void', 'noreturn', 'u8', or '!u8'";
 
// This is marked inline because for some reason LLVM in release mode fails to inline it,
// and we want fewer call frames in stack traces.
inline fn initEventLoopAndCallMain() u8 {
if (std.event.Loop.instance) |loop| {
if (loop == std.event.Loop.default_instance) {
loop.init() catch |err| {
std.log.err("{s}", .{@errorName(err)});
if (@errorReturnTrace()) |trace| {
std.debug.dumpStackTrace(trace.*);
}
return 1;
};
defer loop.deinit();
 
var result: u8 = undefined;
var frame: @Frame(callMainAsync) = undefined;
_ = @asyncCall(&frame, &result, callMainAsync, .{loop});
loop.run();
return result;
}
}
 
// This is marked inline because for some reason LLVM in release mode fails to inline it,
// and we want fewer call frames in stack traces.
return @call(.always_inline, callMain, .{});
}
 
// This is marked inline because for some reason LLVM in release mode fails to inline it,
// and we want fewer call frames in stack traces.
// TODO This function is duplicated from initEventLoopAndCallMain instead of using generics
// because it is working around stage1 compiler bugs.
inline fn initEventLoopAndCallWinMain() std.os.windows.INT {
if (std.event.Loop.instance) |loop| {
if (loop == std.event.Loop.default_instance) {
loop.init() catch |err| {
std.log.err("{s}", .{@errorName(err)});
if (@errorReturnTrace()) |trace| {
std.debug.dumpStackTrace(trace.*);
}
return 1;
};
defer loop.deinit();
 
var result: std.os.windows.INT = undefined;
var frame: @Frame(callWinMainAsync) = undefined;
_ = @asyncCall(&frame, &result, callWinMainAsync, .{loop});
loop.run();
return result;
}
}
 
// This is marked inline because for some reason LLVM in release mode fails to inline it,
// and we want fewer call frames in stack traces.
return @call(.always_inline, call_wWinMain, .{});
}
 
fn callMainAsync(loop: *std.event.Loop) callconv(.Async) u8 {
// This prevents the event loop from terminating at least until main() has returned.
// TODO This shouldn't be needed here; it should be in the event loop code.
loop.beginOneEvent();
defer loop.finishOneEvent();
return callMain();
}
 
fn callWinMainAsync(loop: *std.event.Loop) callconv(.Async) std.os.windows.INT {
// This prevents the event loop from terminating at least until main() has returned.
// TODO This shouldn't be needed here; it should be in the event loop code.
loop.beginOneEvent();
defer loop.finishOneEvent();
return call_wWinMain();
}
 
// This is not marked inline because it is called with @asyncCall when
// there is an event loop.
pub fn callMain() u8 {
pub inline fn callMain() u8 {
switch (@typeInfo(@typeInfo(@TypeOf(root.main)).Fn.return_type.?)) {
.NoReturn => {
root.main();
 
lib/std/std.zig added: 231, removed: 4796, total 0
@@ -92,9 +92,6 @@ pub const elf = @import("elf.zig");
/// Enum-related metaprogramming helpers.
pub const enums = @import("enums.zig");
 
/// Evented I/O data structures.
pub const event = @import("event.zig");
 
/// First in, first out data structures.
pub const fifo = @import("fifo.zig");
 
@@ -198,79 +195,35 @@ pub const zig = @import("zig.zig");
pub const start = @import("start.zig");
 
const root = @import("root");
const options_override = if (@hasDecl(root, "std_options")) root.std_options else struct {};
 
/// Stdlib-wide options that can be overridden by the root file.
pub const options = struct {
pub const enable_segfault_handler: bool = if (@hasDecl(options_override, "enable_segfault_handler"))
options_override.enable_segfault_handler
else
debug.default_enable_segfault_handler;
pub const options: Options = if (@hasDecl(root, "std_options")) root.std_options else .{};
 
pub const Options = struct {
enable_segfault_handler: bool = debug.default_enable_segfault_handler,
 
/// Function used to implement `std.fs.cwd` for WASI.
pub const wasiCwd: fn () fs.Dir = if (@hasDecl(options_override, "wasiCwd"))
options_override.wasiCwd
else
fs.defaultWasiCwd;
 
/// The application's chosen I/O mode.
pub const io_mode: io.Mode = if (@hasDecl(options_override, "io_mode"))
options_override.io_mode
else if (@hasDecl(options_override, "event_loop"))
.evented
else
.blocking;
 
pub const event_loop: event.Loop.Instance = if (@hasDecl(options_override, "event_loop"))
options_override.event_loop
else
event.Loop.default_instance;
 
pub const event_loop_mode: event.Loop.Mode = if (@hasDecl(options_override, "event_loop_mode"))
options_override.event_loop_mode
else
event.Loop.default_mode;
wasiCwd: fn () os.wasi.fd_t = fs.defaultWasiCwd,
 
/// The current log level.
pub const log_level: log.Level = if (@hasDecl(options_override, "log_level"))
options_override.log_level
else
log.default_level;
log_level: log.Level = log.default_level,
 
pub const log_scope_levels: []const log.ScopeLevel = if (@hasDecl(options_override, "log_scope_levels"))
options_override.log_scope_levels
else
&.{};
log_scope_levels: []const log.ScopeLevel = &.{},
 
pub const logFn: fn (
logFn: fn (
comptime message_level: log.Level,
comptime scope: @TypeOf(.enum_literal),
comptime format: []const u8,
args: anytype,
) void = if (@hasDecl(options_override, "logFn"))
options_override.logFn
else
log.defaultLog;
) void = log.defaultLog,
 
pub const fmt_max_depth = if (@hasDecl(options_override, "fmt_max_depth"))
options_override.fmt_max_depth
else
fmt.default_max_depth;
fmt_max_depth: usize = fmt.default_max_depth,
 
pub const cryptoRandomSeed: fn (buffer: []u8) void = if (@hasDecl(options_override, "cryptoRandomSeed"))
options_override.cryptoRandomSeed
else
@import("crypto/tlcsprng.zig").defaultRandomSeed;
cryptoRandomSeed: fn (buffer: []u8) void = @import("crypto/tlcsprng.zig").defaultRandomSeed,
 
pub const crypto_always_getrandom: bool = if (@hasDecl(options_override, "crypto_always_getrandom"))
options_override.crypto_always_getrandom
else
false;
crypto_always_getrandom: bool = false,
 
pub const crypto_fork_safety: bool = if (@hasDecl(options_override, "crypto_fork_safety"))
options_override.crypto_fork_safety
else
true;
crypto_fork_safety: bool = true,
 
/// By default Zig disables SIGPIPE by setting a "no-op" handler for it. Set this option
/// to `true` to prevent that.
@@ -283,35 +236,22 @@ pub const options = struct {
/// cases it's unclear why the process was terminated. By capturing SIGPIPE instead, functions that
/// write to broken pipes will return the EPIPE error (error.BrokenPipe) and the program can handle
/// it like any other error.
pub const keep_sigpipe: bool = if (@hasDecl(options_override, "keep_sigpipe"))
options_override.keep_sigpipe
else
false;
keep_sigpipe: bool = false,
 
/// By default, std.http.Client will support HTTPS connections. Set this option to `true` to
/// disable TLS support.
///
/// This will likely reduce the size of the binary, but it will also make it impossible to
/// make a HTTPS connection.
pub const http_disable_tls = if (@hasDecl(options_override, "http_disable_tls"))
options_override.http_disable_tls
else
false;
http_disable_tls: bool = false,
 
pub const side_channels_mitigations: crypto.SideChannelsMitigations = if (@hasDecl(options_override, "side_channels_mitigations"))
options_override.side_channels_mitigations
else
crypto.default_side_channels_mitigations;
side_channels_mitigations: crypto.SideChannelsMitigations = crypto.default_side_channels_mitigations,
};
 
// This forces the start.zig file to be imported, and the comptime logic inside that
// file decides whether to export any appropriate start symbols, and call main.
comptime {
_ = start;
 
for (@typeInfo(options_override).Struct.decls) |decl| {
if (!@hasDecl(options, decl.name)) @compileError("no option named " ++ decl.name);
}
}
 
test {
 
lib/std/time.zig added: 231, removed: 4796, total 0
@@ -9,11 +9,6 @@ pub const epoch = @import("time/epoch.zig");
 
/// Spurious wakeups are possible and no precision of timing is guaranteed.
pub fn sleep(nanoseconds: u64) void {
// TODO: opting out of async sleeping?
if (std.io.is_async) {
return std.event.Loop.instance.?.sleep(nanoseconds);
}
 
if (builtin.os.tag == .windows) {
const big_ms_from_ns = nanoseconds / ns_per_ms;
const ms = math.cast(os.windows.DWORD, big_ms_from_ns) orelse math.maxInt(os.windows.DWORD);
 
lib/std/zig/Server.zig added: 231, removed: 4796, total 0
@@ -38,8 +38,6 @@ pub const Message = struct {
/// Trailing:
/// * name: [tests_len]u32
/// - null-terminated string_bytes index
/// * async_frame_len: [tests_len]u32,
/// - 0 means not async
/// * expected_panic_msg: [tests_len]u32,
/// - null-terminated string_bytes index
/// - 0 means does not expect pani
@@ -210,7 +208,6 @@ pub fn serveErrorBundle(s: *Server, error_bundle: std.zig.ErrorBundle) !void {
 
pub const TestMetadata = struct {
names: []u32,
async_frame_sizes: []u32,
expected_panic_msgs: []u32,
string_bytes: []const u8,
};
@@ -220,17 +217,16 @@ pub fn serveTestMetadata(s: *Server, test_metadata: TestMetadata) !void {
.tests_len = bswap(@as(u32, @intCast(test_metadata.names.len))),
.string_bytes_len = bswap(@as(u32, @intCast(test_metadata.string_bytes.len))),
};
const trailing = 2;
const bytes_len = @sizeOf(OutMessage.TestMetadata) +
3 * 4 * test_metadata.names.len + test_metadata.string_bytes.len;
trailing * @sizeOf(u32) * test_metadata.names.len + test_metadata.string_bytes.len;
 
if (need_bswap) {
bswap_u32_array(test_metadata.names);
bswap_u32_array(test_metadata.async_frame_sizes);
bswap_u32_array(test_metadata.expected_panic_msgs);
}
defer if (need_bswap) {
bswap_u32_array(test_metadata.names);
bswap_u32_array(test_metadata.async_frame_sizes);
bswap_u32_array(test_metadata.expected_panic_msgs);
};
 
@@ -241,7 +237,6 @@ pub fn serveTestMetadata(s: *Server, test_metadata: TestMetadata) !void {
std.mem.asBytes(&header),
// TODO: implement @ptrCast between slices changing the length
std.mem.sliceAsBytes(test_metadata.names),
std.mem.sliceAsBytes(test_metadata.async_frame_sizes),
std.mem.sliceAsBytes(test_metadata.expected_panic_msgs),
test_metadata.string_bytes,
});
 
lib/std/zig/system/linux.zig added: 231, removed: 4796, total 0
@@ -328,7 +328,7 @@ fn CpuinfoParser(comptime impl: anytype) type {
}
 
pub fn detectNativeCpuAndFeatures() ?Target.Cpu {
var f = fs.openFileAbsolute("/proc/cpuinfo", .{ .intended_io_mode = .blocking }) catch |err| switch (err) {
var f = fs.openFileAbsolute("/proc/cpuinfo", .{}) catch |err| switch (err) {
else => return null,
};
defer f.close();
 
lib/test_runner.zig added: 231, removed: 4796, total 0
@@ -3,9 +3,8 @@ const std = @import("std");
const io = std.io;
const builtin = @import("builtin");
 
pub const std_options = struct {
pub const io_mode: io.Mode = builtin.test_io_mode;
pub const logFn = log;
pub const std_options = .{
.logFn = log,
};
 
var log_err_count: usize = 0;
@@ -65,24 +64,19 @@ fn mainServer() !void {
const test_fns = builtin.test_functions;
const names = try std.testing.allocator.alloc(u32, test_fns.len);
defer std.testing.allocator.free(names);
const async_frame_sizes = try std.testing.allocator.alloc(u32, test_fns.len);
defer std.testing.allocator.free(async_frame_sizes);
const expected_panic_msgs = try std.testing.allocator.alloc(u32, test_fns.len);
defer std.testing.allocator.free(expected_panic_msgs);
 
for (test_fns, names, async_frame_sizes, expected_panic_msgs) |test_fn, *name, *async_frame_size, *expected_panic_msg| {
for (test_fns, names, expected_panic_msgs) |test_fn, *name, *expected_panic_msg| {
name.* = @as(u32, @intCast(string_bytes.items.len));
try string_bytes.ensureUnusedCapacity(std.testing.allocator, test_fn.name.len + 1);
string_bytes.appendSliceAssumeCapacity(test_fn.name);
string_bytes.appendAssumeCapacity(0);
 
async_frame_size.* = @as(u32, @intCast(test_fn.async_frame_size orelse 0));
expected_panic_msg.* = 0;
}
 
try server.serveTestMetadata(.{
.names = names,
.async_frame_sizes = async_frame_sizes,
.expected_panic_msgs = expected_panic_msgs,
.string_bytes = string_bytes.items,
});
@@ -93,8 +87,6 @@ fn mainServer() !void {
log_err_count = 0;
const index = try server.receiveBody_u32();
const test_fn = builtin.test_functions[index];
if (test_fn.async_frame_size != null)
@panic("TODO test runner implement async tests");
var fail = false;
var skip = false;
var leak = false;
@@ -163,23 +155,7 @@ fn mainTerminal() void {
if (!have_tty) {
std.debug.print("{d}/{d} {s}... ", .{ i + 1, test_fn_list.len, test_fn.name });
}
const result = if (test_fn.async_frame_size) |size| switch (std.options.io_mode) {
.evented => blk: {
if (async_frame_buffer.len < size) {
std.heap.page_allocator.free(async_frame_buffer);
async_frame_buffer = std.heap.page_allocator.alignedAlloc(u8, std.Target.stack_align, size) catch @panic("out of memory");
}
const casted_fn = @as(fn () callconv(.Async) anyerror!void, @ptrCast(test_fn.func));
break :blk await @asyncCall(async_frame_buffer, {}, casted_fn, .{});
},
.blocking => {
skip_count += 1;
test_node.end();
progress.log("SKIP (async test)\n", .{});
continue;
},
} else test_fn.func();
if (result) |_| {
if (test_fn.func()) |_| {
ok_count += 1;
test_node.end();
if (!have_tty) std.debug.print("OK\n", .{});
 
src/Builtin.zig added: 231, removed: 4796, total 0
@@ -3,7 +3,6 @@ zig_backend: std.builtin.CompilerBackend,
output_mode: std.builtin.OutputMode,
link_mode: std.builtin.LinkMode,
is_test: bool,
test_evented_io: bool,
single_threaded: bool,
link_libc: bool,
link_libcpp: bool,
@@ -222,17 +221,6 @@ pub fn append(opts: @This(), buffer: *std.ArrayList(u8)) Allocator.Error!void {
\\pub var test_functions: []const std.builtin.TestFn = undefined; // overwritten later
\\
);
if (opts.test_evented_io) {
try buffer.appendSlice(
\\pub const test_io_mode = .evented;
\\
);
} else {
try buffer.appendSlice(
\\pub const test_io_mode = .blocking;
\\
);
}
}
}
 
 
src/Compilation.zig added: 231, removed: 4796, total 0
@@ -1613,7 +1613,6 @@ pub fn create(gpa: Allocator, arena: Allocator, options: CreateOptions) !*Compil
hash.add(options.config.use_lib_llvm);
hash.add(options.config.dll_export_fns);
hash.add(options.config.is_test);
hash.add(options.config.test_evented_io);
hash.addOptionalBytes(options.test_filter);
hash.addOptionalBytes(options.test_name_prefix);
hash.add(options.skip_linker_dependencies);
@@ -2476,7 +2475,6 @@ fn addNonIncrementalStuffToCacheManifest(
try addModuleTableToCacheHash(gpa, arena, &man.hash, mod.root_mod, mod.main_mod, .{ .files = man });
 
// Synchronize with other matching comments: ZigOnlyHashStuff
man.hash.add(comp.config.test_evented_io);
man.hash.addOptionalBytes(comp.test_filter);
man.hash.addOptionalBytes(comp.test_name_prefix);
man.hash.add(comp.skip_linker_dependencies);
 
src/Compilation/Config.zig added: 231, removed: 4796, total 0
@@ -54,7 +54,6 @@ import_memory: bool,
export_memory: bool,
shared_memory: bool,
is_test: bool,
test_evented_io: bool,
debug_format: DebugFormat,
root_strip: bool,
root_error_tracing: bool,
@@ -104,7 +103,6 @@ pub const Options = struct {
import_memory: ?bool = null,
export_memory: ?bool = null,
shared_memory: ?bool = null,
test_evented_io: bool = false,
debug_format: ?DebugFormat = null,
dll_export_fns: ?bool = null,
rdynamic: ?bool = null,
@@ -477,7 +475,6 @@ pub fn resolve(options: Options) ResolveError!Config {
.output_mode = options.output_mode,
.have_zcu = options.have_zcu,
.is_test = options.is_test,
.test_evented_io = options.test_evented_io,
.link_mode = link_mode,
.link_libc = link_libc,
.link_libcpp = link_libcpp,
 
src/Module.zig added: 231, removed: 4796, total 0
@@ -5620,10 +5620,6 @@ pub fn populateTestFunctions(
}
const decl = mod.declPtr(decl_index);
const test_fn_ty = decl.ty.slicePtrFieldType(mod).childType(mod);
const null_usize = try mod.intern(.{ .opt = .{
.ty = try mod.intern(.{ .opt_type = .usize_type }),
.val = .none,
} });
 
const array_decl_index = d: {
// Add mod.test_functions to an array decl then make the test_functions
@@ -5631,11 +5627,6 @@ pub fn populateTestFunctions(
const test_fn_vals = try gpa.alloc(InternPool.Index, mod.test_functions.count());
defer gpa.free(test_fn_vals);
 
// Add a dependency on each test name and function pointer.
var array_decl_dependencies = std.ArrayListUnmanaged(Decl.Index){};
defer array_decl_dependencies.deinit(gpa);
try array_decl_dependencies.ensureUnusedCapacity(gpa, test_fn_vals.len * 2);
 
for (test_fn_vals, mod.test_functions.keys()) |*test_fn_val, test_decl_index| {
const test_decl = mod.declPtr(test_decl_index);
// TODO: write something like getCoercedInts to avoid needing to dupe
@@ -5655,8 +5646,6 @@ pub fn populateTestFunctions(
});
break :n test_name_decl_index;
};
array_decl_dependencies.appendAssumeCapacity(test_decl_index);
array_decl_dependencies.appendAssumeCapacity(test_name_decl_index);
try mod.linkerUpdateDecl(test_name_decl_index);
 
const test_fn_fields = .{
@@ -5682,8 +5671,6 @@ pub fn populateTestFunctions(
} }),
.addr = .{ .decl = test_decl_index },
} }),
// async_frame_size
null_usize,
};
test_fn_val.* = try mod.intern(.{ .aggregate = .{
.ty = test_fn_ty.toIntern(),
 
src/Package/Module.zig added: 231, removed: 4796, total 0
@@ -349,7 +349,6 @@ pub fn create(arena: Allocator, options: CreateOptions) !*Package.Module {
.output_mode = options.global.output_mode,
.link_mode = options.global.link_mode,
.is_test = options.global.is_test,
.test_evented_io = options.global.test_evented_io,
.single_threaded = single_threaded,
.link_libc = options.global.link_libc,
.link_libcpp = options.global.link_libcpp,
 
src/main.zig added: 231, removed: 4796, total 0
@@ -29,27 +29,27 @@ const AstGen = @import("AstGen.zig");
const mingw = @import("mingw.zig");
const Server = std.zig.Server;
 
pub const std_options = struct {
pub const wasiCwd = wasi_cwd;
pub const logFn = log;
pub const enable_segfault_handler = false;
pub const std_options = .{
.wasiCwd = wasi_cwd,
.logFn = log,
.enable_segfault_handler = false,
 
pub const log_level: std.log.Level = switch (builtin.mode) {
.log_level = switch (builtin.mode) {
.Debug => .debug,
.ReleaseSafe, .ReleaseFast => .info,
.ReleaseSmall => .err,
};
},
};
 
// Crash report needs to override the panic handler
pub const panic = crash_report.panic;
 
var wasi_preopens: fs.wasi.Preopens = undefined;
pub fn wasi_cwd() fs.Dir {
pub fn wasi_cwd() std.os.wasi.fd_t {
// Expect the first preopen to be current working directory.
const cwd_fd: std.os.fd_t = 3;
assert(mem.eql(u8, wasi_preopens.names[cwd_fd], "."));
return .{ .fd = cwd_fd };
return cwd_fd;
}
 
fn getWasiPreopen(name: []const u8) Compilation.Directory {
@@ -1335,8 +1335,6 @@ fn buildOutputType(
create_module.each_lib_rpath = false;
} else if (mem.eql(u8, arg, "--test-cmd-bin")) {
try test_exec_args.append(null);
} else if (mem.eql(u8, arg, "--test-evented-io")) {
create_module.opts.test_evented_io = true;
} else if (mem.eql(u8, arg, "--test-no-exec")) {
test_no_exec = true;
} else if (mem.eql(u8, arg, "-ftime-report")) {
 
test/cases/compile_errors/missing_main_fn_in_executable.zig added: 231, removed: 4796, total 0
@@ -7,4 +7,3 @@
// : note: struct declared here
// : note: called from here
// : note: called from here
// : note: called from here
 
test/cases/compile_errors/private_main_fn.zig added: 231, removed: 4796, total 0
@@ -9,4 +9,3 @@ fn main() void {}
// :1:1: note: declared here
// : note: called from here
// : note: called from here
// : note: called from here
 
test/compare_output.zig added: 231, removed: 4796, total 0
@@ -440,14 +440,14 @@ pub fn addCases(cases: *tests.CompareOutputContext) void {
cases.add("std.log per scope log level override",
\\const std = @import("std");
\\
\\pub const std_options = struct {
\\ pub const log_level: std.log.Level = .debug;
\\pub const std_options = .{
\\ .log_level = .debug,
\\
\\ pub const log_scope_levels = &[_]std.log.ScopeLevel{
\\ .log_scope_levels = &.{
\\ .{ .scope = .a, .level = .warn },
\\ .{ .scope = .c, .level = .err },
\\ };
\\ pub const logFn = log;
\\ },
\\ .logFn = log,
\\};
\\
\\const loga = std.log.scoped(.a);
@@ -497,9 +497,9 @@ pub fn addCases(cases: *tests.CompareOutputContext) void {
cases.add("std.heap.LoggingAllocator logs to std.log",
\\const std = @import("std");
\\
\\pub const std_options = struct {
\\ pub const log_level: std.log.Level = .debug;
\\ pub const logFn = log;
\\pub const std_options = .{
\\ .log_level = .debug,
\\ .logFn = log,
\\};
\\
\\pub fn main() !void {
 
test/src/Cases.zig added: 231, removed: 4796, total 0
@@ -1207,8 +1207,8 @@ const WaitGroup = std.Thread.WaitGroup;
const build_options = @import("build_options");
const Package = @import("../../src/Package.zig");
 
pub const std_options = struct {
pub const log_level: std.log.Level = .err;
pub const std_options = .{
.log_level = .err,
};
 
var general_purpose_allocator = std.heap.GeneralPurposeAllocator(.{
 
test/standalone/http.zig added: 231, removed: 4796, total 0
@@ -7,8 +7,8 @@ const Client = http.Client;
const mem = std.mem;
const testing = std.testing;
 
pub const std_options = struct {
pub const http_disable_tls = true;
pub const std_options = .{
.http_disable_tls = true,
};
 
const max_header_size = 8192;
 
test/standalone/issue_7030.zig added: 231, removed: 4796, total 0
@@ -1,7 +1,7 @@
const std = @import("std");
 
pub const std_options = struct {
pub const logFn = log;
pub const std_options = .{
.logFn = log,
};
 
pub fn log(
 
ev/null added: 231, removed: 4796, total 0
@@ -1,4 +0,0 @@
pub const std_options = struct {
pub const io_mode = .evented;
};
pub fn main() void {}
 
test/standalone/sigpipe/breakpipe.zig added: 231, removed: 4796, total 0
@@ -1,11 +1,11 @@
const std = @import("std");
const build_options = @import("build_options");
 
pub const std_options = if (build_options.keep_sigpipe) struct {
pub const keep_sigpipe = true;
} else struct {
// intentionally not setting keep_sigpipe to ensure the default behavior is equivalent to false
};
pub usingnamespace if (build_options.keep_sigpipe) struct {
pub const std_options = .{
.keep_sigpipe = true,
};
} else struct {};
 
pub fn main() !void {
const pipe = try std.os.pipe();