srctree

Ryan Liptak parent b344ff01 4ee1309a
std.unicode: Refactor and add WTF-16/WTF-8 functions

Renamed functions for consistent Le capitalization and conventions:

  • utf16leToUtf8Alloc -> utf16LeToUtf8Alloc
  • utf16leToUtf8AllocZ -> utf16LeToUtf8AllocZ
  • utf16leToUtf8 -> utf16LeToUtf8
  • utf8ToUtf16LeWithNull -> utf8ToUtf16LeAllocZ
  • fmtUtf16le -> fmtUtf16Le
  • New UTF related functions:
  • utf16LeToUtf8ArrayList
  • utf8ToUtf16LeArrayList
  • utf8ToUtf16LeAlloc
  • isSurrogateCodepoint
  • (the ArrayList functions are mostly to allow the Alloc and AllocZ to share an implementation)
  • New WTF related functions/structs:
  • wtf8Encode
  • wtf8Decode
  • wtf8ValidateSlice
  • Wtf8View
  • Wtf8Iterator
  • wtf16LeToWtf8ArrayList
  • wtf16LeToWtf8Alloc
  • wtf16LeToWtf8AllocZ
  • wtf16LeToWtf8
  • wtf8ToWtf16LeArrayList
  • wtf8ToWtf16LeAlloc
  • wtf8ToWtf16LeAllocZ
  • wtf8ToWtf16Le
  • wtf8ToUtf8Lossy
  • wtf8ToUtf8LossyAlloc
  • wtf8ToUtf8LossyAllocZ
  • Wtf16LeIterator
inlinesplit
lib/std/unicode.zig added: 783, removed: 121, total 662
@@ -39,7 +39,16 @@ pub fn utf8ByteSequenceLength(first_byte: u8) !u3 {
/// out: the out buffer to write to. Must have a len >= utf8CodepointSequenceLength(c).
/// Errors: if c cannot be encoded in UTF-8.
/// Returns: the number of bytes written to out.
pub fn utf8Encode(c: u21, out: []u8) !u3 {
pub fn utf8Encode(c: u21, out: []u8) error{ Utf8CannotEncodeSurrogateHalf, CodepointTooLarge }!u3 {
return utf8EncodeImpl(c, out, .cannot_encode_surrogate_half);
}
 
const Surrogates = enum {
cannot_encode_surrogate_half,
can_encode_surrogate_half,
};
 
fn utf8EncodeImpl(c: u21, out: []u8, comptime surrogates: Surrogates) !u3 {
const length = try utf8CodepointSequenceLength(c);
assert(out.len >= length);
switch (length) {
@@ -53,7 +62,9 @@ pub fn utf8Encode(c: u21, out: []u8) !u3 {
out[1] = @as(u8, @intCast(0b10000000 | (c & 0b111111)));
},
3 => {
if (0xd800 <= c and c <= 0xdfff) return error.Utf8CannotEncodeSurrogateHalf;
if (surrogates == .cannot_encode_surrogate_half and isSurrogateCodepoint(c)) {
return error.Utf8CannotEncodeSurrogateHalf;
}
out[0] = @as(u8, @intCast(0b11100000 | (c >> 12)));
out[1] = @as(u8, @intCast(0b10000000 | ((c >> 6) & 0b111111)));
out[2] = @as(u8, @intCast(0b10000000 | (c & 0b111111)));
@@ -116,12 +127,22 @@ pub fn utf8Decode2(bytes: []const u8) Utf8Decode2Error!u21 {
return value;
}
 
const Utf8Decode3Error = error{
Utf8ExpectedContinuation,
Utf8OverlongEncoding,
const Utf8Decode3Error = Utf8Decode3AllowSurrogateHalfError || error{
Utf8EncodesSurrogateHalf,
};
pub fn utf8Decode3(bytes: []const u8) Utf8Decode3Error!u21 {
const value = try utf8Decode3AllowSurrogateHalf(bytes);
 
if (0xd800 <= value and value <= 0xdfff) return error.Utf8EncodesSurrogateHalf;
 
return value;
}
 
const Utf8Decode3AllowSurrogateHalfError = error{
Utf8ExpectedContinuation,
Utf8OverlongEncoding,
};
pub fn utf8Decode3AllowSurrogateHalf(bytes: []const u8) Utf8Decode3AllowSurrogateHalfError!u21 {
assert(bytes.len == 3);
assert(bytes[0] & 0b11110000 == 0b11100000);
var value: u21 = bytes[0] & 0b00001111;
@@ -135,7 +156,6 @@ pub fn utf8Decode3(bytes: []const u8) Utf8Decode3Error!u21 {
value |= bytes[2] & 0b00111111;
 
if (value < 0x800) return error.Utf8OverlongEncoding;
if (0xd800 <= value and value <= 0xdfff) return error.Utf8EncodesSurrogateHalf;
 
return value;
}
@@ -213,6 +233,10 @@ pub fn utf8CountCodepoints(s: []const u8) !usize {
 
/// Returns true if the input consists entirely of UTF-8 codepoints
pub fn utf8ValidateSlice(input: []const u8) bool {
return utf8ValidateSliceImpl(input, .cannot_encode_surrogate_half);
}
 
fn utf8ValidateSliceImpl(input: []const u8, comptime surrogates: Surrogates) bool {
var remaining = input;
 
const chunk_len = std.simd.suggestVectorLength(u8) orelse 1;
@@ -240,9 +264,15 @@ pub fn utf8ValidateSlice(input: []const u8) bool {
const xx = 0xF1; // invalid: size 1
const as = 0xF0; // ASCII: size 1
const s1 = 0x02; // accept 0, size 2
const s2 = 0x13; // accept 1, size 3
const s2 = switch (surrogates) {
.cannot_encode_surrogate_half => 0x13, // accept 1, size 3
.can_encode_surrogate_half => 0x03, // accept 0, size 3
};
const s3 = 0x03; // accept 0, size 3
const s4 = 0x23; // accept 2, size 3
const s4 = switch (surrogates) {
.cannot_encode_surrogate_half => 0x23, // accept 2, size 3
.can_encode_surrogate_half => 0x03, // accept 0, size 3
};
const s5 = 0x34; // accept 3, size 4
const s6 = 0x04; // accept 0, size 4
const s7 = 0x44; // accept 4, size 4
@@ -770,94 +800,93 @@ fn testDecode(bytes: []const u8) !u21 {
return utf8Decode(bytes);
}
 
fn utf16LeToUtf8ArrayListImpl(array_list: *std.ArrayList(u8), utf16le: []const u16, comptime surrogates: Surrogates) !void {
// optimistically guess that it will all be ascii.
try array_list.ensureTotalCapacityPrecise(utf16le.len);
 
var remaining = utf16le;
if (builtin.zig_backend != .stage2_x86_64) {
const chunk_len = std.simd.suggestVectorLength(u16) orelse 1;
const Chunk = @Vector(chunk_len, u16);
 
// Fast path. Check for and encode ASCII characters at the start of the input.
while (remaining.len >= chunk_len) {
const chunk: Chunk = remaining[0..chunk_len].*;
const mask: Chunk = @splat(std.mem.nativeToLittle(u16, 0x7F));
if (@reduce(.Or, chunk | mask != mask)) {
// found a non ASCII code unit
break;
}
const chunk_byte_len = chunk_len * 2;
const chunk_bytes: @Vector(chunk_byte_len, u8) = (std.mem.sliceAsBytes(remaining)[0..chunk_byte_len]).*;
const deinterlaced_bytes = std.simd.deinterlace(2, chunk_bytes);
const ascii_bytes: [chunk_len]u8 = deinterlaced_bytes[0];
// We allocated enough space to encode every UTF-16 code unit
// as ASCII, so if the entire string is ASCII then we are
// guaranteed to have enough space allocated
array_list.appendSliceAssumeCapacity(&ascii_bytes);
remaining = remaining[chunk_len..];
}
}
 
var out_index: usize = array_list.items.len;
switch (surrogates) {
.cannot_encode_surrogate_half => {
var it = Utf16LeIterator.init(remaining);
while (try it.nextCodepoint()) |codepoint| {
const utf8_len = utf8CodepointSequenceLength(codepoint) catch unreachable;
try array_list.resize(array_list.items.len + utf8_len);
assert((utf8Encode(codepoint, array_list.items[out_index..]) catch unreachable) == utf8_len);
out_index += utf8_len;
}
},
.can_encode_surrogate_half => {
var it = Wtf16LeIterator.init(remaining);
while (it.nextCodepoint()) |codepoint| {
const utf8_len = utf8CodepointSequenceLength(codepoint) catch unreachable;
try array_list.resize(array_list.items.len + utf8_len);
assert((wtf8Encode(codepoint, array_list.items[out_index..]) catch unreachable) == utf8_len);
out_index += utf8_len;
}
},
}
}
 
pub fn utf16LeToUtf8ArrayList(array_list: *std.ArrayList(u8), utf16le: []const u16) !void {
return utf16LeToUtf8ArrayListImpl(array_list, utf16le, .cannot_encode_surrogate_half);
}
 
/// Deprecated; renamed to utf16LeToUtf8Alloc
pub const utf16leToUtf8Alloc = utf16LeToUtf8Alloc;
 
/// Caller must free returned memory.
pub fn utf16leToUtf8Alloc(allocator: mem.Allocator, utf16le: []const u16) ![]u8 {
pub fn utf16LeToUtf8Alloc(allocator: mem.Allocator, utf16le: []const u16) ![]u8 {
// optimistically guess that it will all be ascii.
var result = try std.ArrayList(u8).initCapacity(allocator, utf16le.len);
errdefer result.deinit();
 
var remaining = utf16le;
if (builtin.zig_backend != .stage2_x86_64) {
const chunk_len = std.simd.suggestVectorLength(u16) orelse 1;
const Chunk = @Vector(chunk_len, u16);
 
// Fast path. Check for and encode ASCII characters at the start of the input.
while (remaining.len >= chunk_len) {
const chunk: Chunk = remaining[0..chunk_len].*;
const mask: Chunk = @splat(std.mem.nativeToLittle(u16, 0x7F));
if (@reduce(.Or, chunk | mask != mask)) {
// found a non ASCII code unit
break;
}
const chunk_byte_len = chunk_len * 2;
const chunk_bytes: @Vector(chunk_byte_len, u8) = (std.mem.sliceAsBytes(remaining)[0..chunk_byte_len]).*;
const deinterlaced_bytes = std.simd.deinterlace(2, chunk_bytes);
const ascii_bytes: [chunk_len]u8 = deinterlaced_bytes[0];
// We allocated enough space to encode every UTF-16 code unit
// as ASCII, so if the entire string is ASCII then we are
// guaranteed to have enough space allocated
result.appendSliceAssumeCapacity(&ascii_bytes);
remaining = remaining[chunk_len..];
}
}
 
var out_index: usize = result.items.len;
var it = Utf16LeIterator.init(remaining);
while (try it.nextCodepoint()) |codepoint| {
const utf8_len = utf8CodepointSequenceLength(codepoint) catch unreachable;
try result.resize(result.items.len + utf8_len);
assert((utf8Encode(codepoint, result.items[out_index..]) catch unreachable) == utf8_len);
out_index += utf8_len;
}
try utf16LeToUtf8ArrayList(&result, utf16le);
 
return result.toOwnedSlice();
}
 
/// Deprecated; renamed to utf16LeToUtf8AllocZ
pub const utf16leToUtf8AllocZ = utf16LeToUtf8AllocZ;
 
/// Caller must free returned memory.
pub fn utf16leToUtf8AllocZ(allocator: mem.Allocator, utf16le: []const u16) ![:0]u8 {
pub fn utf16LeToUtf8AllocZ(allocator: mem.Allocator, utf16le: []const u16) ![:0]u8 {
// optimistically guess that it will all be ascii (and allocate space for the null terminator)
var result = try std.ArrayList(u8).initCapacity(allocator, utf16le.len + 1);
errdefer result.deinit();
 
var remaining = utf16le;
if (builtin.zig_backend != .stage2_x86_64) {
const chunk_len = std.simd.suggestVectorLength(u16) orelse 1;
const Chunk = @Vector(chunk_len, u16);
try utf16LeToUtf8ArrayList(&result, utf16le);
 
// Fast path. Check for and encode ASCII characters at the start of the input.
while (remaining.len >= chunk_len) {
const chunk: Chunk = remaining[0..chunk_len].*;
const mask: Chunk = @splat(std.mem.nativeToLittle(u16, 0x7F));
if (@reduce(.Or, chunk | mask != mask)) {
// found a non ASCII code unit
break;
}
const chunk_byte_len = chunk_len * 2;
const chunk_bytes: @Vector(chunk_byte_len, u8) = (std.mem.sliceAsBytes(remaining)[0..chunk_byte_len]).*;
const deinterlaced_bytes = std.simd.deinterlace(2, chunk_bytes);
const ascii_bytes: [chunk_len]u8 = deinterlaced_bytes[0];
// We allocated enough space to encode every UTF-16 code unit
// as ASCII, so if the entire string is ASCII then we are
// guaranteed to have enough space allocated
result.appendSliceAssumeCapacity(&ascii_bytes);
remaining = remaining[chunk_len..];
}
}
 
var out_index = result.items.len;
var it = Utf16LeIterator.init(remaining);
while (try it.nextCodepoint()) |codepoint| {
const utf8_len = utf8CodepointSequenceLength(codepoint) catch unreachable;
try result.resize(result.items.len + utf8_len);
assert((utf8Encode(codepoint, result.items[out_index..]) catch unreachable) == utf8_len);
out_index += utf8_len;
}
return result.toOwnedSliceSentinel(0);
}
 
/// Asserts that the output buffer is big enough.
/// Returns end byte index into utf8.
pub fn utf16leToUtf8(utf8: []u8, utf16le: []const u16) !usize {
fn utf16LeToUtf8Impl(utf8: []u8, utf16le: []const u16, comptime surrogates: Surrogates) !usize {
var end_index: usize = 0;
 
var remaining = utf16le;
@@ -883,30 +912,56 @@ pub fn utf16leToUtf8(utf8: []u8, utf16le: []const u16) !usize {
}
}
 
var it = Utf16LeIterator.init(remaining);
while (try it.nextCodepoint()) |codepoint| {
end_index += try utf8Encode(codepoint, utf8[end_index..]);
switch (surrogates) {
.cannot_encode_surrogate_half => {
var it = Utf16LeIterator.init(remaining);
while (try it.nextCodepoint()) |codepoint| {
end_index += utf8Encode(codepoint, utf8[end_index..]) catch |err| switch (err) {
// The maximum possible codepoint encoded by UTF-16 is U+10FFFF,
// which is within the valid codepoint range.
error.CodepointTooLarge => unreachable,
else => |e| return e,
};
}
},
.can_encode_surrogate_half => {
var it = Wtf16LeIterator.init(remaining);
while (it.nextCodepoint()) |codepoint| {
end_index += wtf8Encode(codepoint, utf8[end_index..]) catch |err| switch (err) {
// The maximum possible codepoint encoded by UTF-16 is U+10FFFF,
// which is within the valid codepoint range.
error.CodepointTooLarge => unreachable,
};
}
},
}
return end_index;
}
 
test "utf16leToUtf8" {
/// Deprecated; renamed to utf16LeToUtf8
pub const utf16leToUtf8 = utf16LeToUtf8;
 
pub fn utf16LeToUtf8(utf8: []u8, utf16le: []const u16) !usize {
return utf16LeToUtf8Impl(utf8, utf16le, .cannot_encode_surrogate_half);
}
 
test utf16LeToUtf8 {
var utf16le: [2]u16 = undefined;
const utf16le_as_bytes = mem.sliceAsBytes(utf16le[0..]);
 
{
mem.writeInt(u16, utf16le_as_bytes[0..2], 'A', .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 'a', .little);
const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
defer std.testing.allocator.free(utf8);
const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le);
defer testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "Aa"));
}
 
{
mem.writeInt(u16, utf16le_as_bytes[0..2], 0x80, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xffff, .little);
const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
defer std.testing.allocator.free(utf8);
const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le);
defer testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "\xc2\x80" ++ "\xef\xbf\xbf"));
}
 
@@ -914,8 +969,8 @@ test "utf16leToUtf8" {
// the values just outside the surrogate half range
mem.writeInt(u16, utf16le_as_bytes[0..2], 0xd7ff, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xe000, .little);
const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
defer std.testing.allocator.free(utf8);
const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le);
defer testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "\xed\x9f\xbf" ++ "\xee\x80\x80"));
}
 
@@ -923,8 +978,8 @@ test "utf16leToUtf8" {
// smallest surrogate pair
mem.writeInt(u16, utf16le_as_bytes[0..2], 0xd800, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xdc00, .little);
const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
defer std.testing.allocator.free(utf8);
const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le);
defer testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "\xf0\x90\x80\x80"));
}
 
@@ -932,31 +987,30 @@ test "utf16leToUtf8" {
// largest surrogate pair
mem.writeInt(u16, utf16le_as_bytes[0..2], 0xdbff, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xdfff, .little);
const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
defer std.testing.allocator.free(utf8);
const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le);
defer testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "\xf4\x8f\xbf\xbf"));
}
 
{
mem.writeInt(u16, utf16le_as_bytes[0..2], 0xdbff, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xdc00, .little);
const utf8 = try utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
defer std.testing.allocator.free(utf8);
const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le);
defer testing.allocator.free(utf8);
try testing.expect(mem.eql(u8, utf8, "\xf4\x8f\xb0\x80"));
}
 
{
mem.writeInt(u16, utf16le_as_bytes[0..2], 0xdcdc, .little);
mem.writeInt(u16, utf16le_as_bytes[2..4], 0xdcdc, .little);
const result = utf16leToUtf8Alloc(std.testing.allocator, &utf16le);
try std.testing.expectError(error.UnexpectedSecondSurrogateHalf, result);
const result = utf16LeToUtf8Alloc(testing.allocator, &utf16le);
try testing.expectError(error.UnexpectedSecondSurrogateHalf, result);
}
}
 
pub fn utf8ToUtf16LeWithNull(allocator: mem.Allocator, utf8: []const u8) ![:0]u16 {
fn utf8ToUtf16LeArrayListImpl(array_list: *std.ArrayList(u16), utf8: []const u8, comptime surrogates: Surrogates) !void {
// optimistically guess that it will not require surrogate pairs
var result = try std.ArrayList(u16).initCapacity(allocator, utf8.len + 1);
errdefer result.deinit();
try array_list.ensureTotalCapacityPrecise(utf8.len);
 
var remaining = utf8;
// Need support for std.simd.interlace
@@ -974,26 +1028,54 @@ pub fn utf8ToUtf16LeWithNull(allocator: mem.Allocator, utf8: []const u8) ![:0]u1
}
const zeroes: Chunk = @splat(0);
const utf16_chunk: [chunk_len * 2]u8 align(@alignOf(u16)) = std.simd.interlace(.{ chunk, zeroes });
result.appendSliceAssumeCapacity(std.mem.bytesAsSlice(u16, &utf16_chunk));
array_list.appendSliceAssumeCapacity(std.mem.bytesAsSlice(u16, &utf16_chunk));
remaining = remaining[chunk_len..];
}
}
 
const view = try Utf8View.init(remaining);
const view = switch (surrogates) {
.cannot_encode_surrogate_half => try Utf8View.init(remaining),
.can_encode_surrogate_half => try Wtf8View.init(remaining),
};
var it = view.iterator();
while (it.nextCodepoint()) |codepoint| {
if (codepoint < 0x10000) {
const short = @as(u16, @intCast(codepoint));
try result.append(mem.nativeToLittle(u16, short));
try array_list.append(mem.nativeToLittle(u16, short));
} else {
const high = @as(u16, @intCast((codepoint - 0x10000) >> 10)) + 0xD800;
const low = @as(u16, @intCast(codepoint & 0x3FF)) + 0xDC00;
var out: [2]u16 = undefined;
out[0] = mem.nativeToLittle(u16, high);
out[1] = mem.nativeToLittle(u16, low);
try result.appendSlice(out[0..]);
try array_list.appendSlice(out[0..]);
}
}
}
 
pub fn utf8ToUtf16LeArrayList(array_list: *std.ArrayList(u16), utf8: []const u8) !void {
return utf8ToUtf16LeArrayListImpl(array_list, utf8, .cannot_encode_surrogate_half);
}
 
pub fn utf8ToUtf16LeAlloc(allocator: mem.Allocator, utf8: []const u8) ![]u16 {
// optimistically guess that it will not require surrogate pairs
var result = try std.ArrayList(u16).initCapacity(allocator, utf8.len);
errdefer result.deinit();
 
try utf8ToUtf16LeArrayListImpl(&result, utf8, .cannot_encode_surrogate_half);
 
return result.toOwnedSlice();
}
 
/// Deprecated; renamed to utf8ToUtf16LeAllocZ
pub const utf8ToUtf16LeWithNull = utf8ToUtf16LeAllocZ;
 
pub fn utf8ToUtf16LeAllocZ(allocator: mem.Allocator, utf8: []const u8) ![:0]u16 {
// optimistically guess that it will not require surrogate pairs
var result = try std.ArrayList(u16).initCapacity(allocator, utf8.len + 1);
errdefer result.deinit();
 
try utf8ToUtf16LeArrayListImpl(&result, utf8, .cannot_encode_surrogate_half);
 
return result.toOwnedSliceSentinel(0);
}
@@ -1001,6 +1083,10 @@ pub fn utf8ToUtf16LeWithNull(allocator: mem.Allocator, utf8: []const u8) ![:0]u1
/// Returns index of next character. If exact fit, returned index equals output slice length.
/// Assumes there is enough space for the output.
pub fn utf8ToUtf16Le(utf16le: []u16, utf8: []const u8) !usize {
return utf8ToUtf16LeImpl(utf16le, utf8, .cannot_encode_surrogate_half);
}
 
pub fn utf8ToUtf16LeImpl(utf16le: []u16, utf8: []const u8, comptime surrogates: Surrogates) !usize {
var dest_i: usize = 0;
 
var remaining = utf8;
@@ -1029,7 +1115,10 @@ pub fn utf8ToUtf16Le(utf16le: []u16, utf8: []const u8) !usize {
while (src_i < remaining.len) {
const n = utf8ByteSequenceLength(remaining[src_i]) catch return error.InvalidUtf8;
const next_src_i = src_i + n;
const codepoint = utf8Decode(remaining[src_i..next_src_i]) catch return error.InvalidUtf8;
const codepoint = switch (surrogates) {
.cannot_encode_surrogate_half => utf8Decode(remaining[src_i..next_src_i]) catch return error.InvalidUtf8,
.can_encode_surrogate_half => wtf8Decode(remaining[src_i..next_src_i]) catch return error.InvalidUtf8,
};
if (codepoint < 0x10000) {
const short = @as(u16, @intCast(codepoint));
utf16le[dest_i] = mem.nativeToLittle(u16, short);
@@ -1064,21 +1153,59 @@ test "utf8ToUtf16Le" {
}
}
 
test "utf8ToUtf16LeWithNull" {
test utf8ToUtf16LeArrayList {
{
const utf16 = try utf8ToUtf16LeWithNull(testing.allocator, "𐐷");
var list = std.ArrayList(u16).init(testing.allocator);
defer list.deinit();
try utf8ToUtf16LeArrayList(&list, "𐐷");
try testing.expectEqualSlices(u8, "\x01\xd8\x37\xdc", mem.sliceAsBytes(list.items));
}
{
var list = std.ArrayList(u16).init(testing.allocator);
defer list.deinit();
try utf8ToUtf16LeArrayList(&list, "\u{10FFFF}");
try testing.expectEqualSlices(u8, "\xff\xdb\xff\xdf", mem.sliceAsBytes(list.items));
}
{
var list = std.ArrayList(u16).init(testing.allocator);
defer list.deinit();
const result = utf8ToUtf16LeArrayList(&list, "\xf4\x90\x80\x80");
try testing.expectError(error.InvalidUtf8, result);
}
}
 
test utf8ToUtf16LeAlloc {
{
const utf16 = try utf8ToUtf16LeAlloc(testing.allocator, "𐐷");
defer testing.allocator.free(utf16);
try testing.expectEqualSlices(u8, "\x01\xd8\x37\xdc", mem.sliceAsBytes(utf16[0..]));
}
{
const utf16 = try utf8ToUtf16LeAlloc(testing.allocator, "\u{10FFFF}");
defer testing.allocator.free(utf16);
try testing.expectEqualSlices(u8, "\xff\xdb\xff\xdf", mem.sliceAsBytes(utf16[0..]));
}
{
const result = utf8ToUtf16LeAlloc(testing.allocator, "\xf4\x90\x80\x80");
try testing.expectError(error.InvalidUtf8, result);
}
}
 
test utf8ToUtf16LeAllocZ {
{
const utf16 = try utf8ToUtf16LeAllocZ(testing.allocator, "𐐷");
defer testing.allocator.free(utf16);
try testing.expectEqualSlices(u8, "\x01\xd8\x37\xdc", mem.sliceAsBytes(utf16[0..]));
try testing.expect(utf16[2] == 0);
}
{
const utf16 = try utf8ToUtf16LeWithNull(testing.allocator, "\u{10FFFF}");
const utf16 = try utf8ToUtf16LeAllocZ(testing.allocator, "\u{10FFFF}");
defer testing.allocator.free(utf16);
try testing.expectEqualSlices(u8, "\xff\xdb\xff\xdf", mem.sliceAsBytes(utf16[0..]));
try testing.expect(utf16[2] == 0);
}
{
const result = utf8ToUtf16LeWithNull(testing.allocator, "\xf4\x90\x80\x80");
const result = utf8ToUtf16LeAllocZ(testing.allocator, "\xf4\x90\x80\x80");
try testing.expectError(error.InvalidUtf8, result);
}
}
@@ -1127,8 +1254,9 @@ test "calculate utf16 string length of given utf8 string in u16" {
try comptime testCalcUtf16LeLen();
}
 
/// Print the given `utf16le` string
fn formatUtf16le(
/// Print the given `utf16le` string, encoded as UTF-8 bytes.
/// Unpaired surrogates are replaced by the replacement character (U+FFFD).
fn formatUtf16Le(
utf16le: []const u16,
comptime fmt: []const u8,
options: std.fmt.FormatOptions,
@@ -1150,22 +1278,25 @@ fn formatUtf16le(
try writer.writeAll(buf[0..u8len]);
}
 
/// Deprecated; renamed to fmtUtf16Le
pub const fmtUtf16le = fmtUtf16Le;
 
/// Return a Formatter for a Utf16le string
pub fn fmtUtf16le(utf16le: []const u16) std.fmt.Formatter(formatUtf16le) {
pub fn fmtUtf16Le(utf16le: []const u16) std.fmt.Formatter(formatUtf16Le) {
return .{ .data = utf16le };
}
 
test "fmtUtf16le" {
const expectFmt = std.testing.expectFmt;
try expectFmt("", "{}", .{fmtUtf16le(utf8ToUtf16LeStringLiteral(""))});
try expectFmt("foo", "{}", .{fmtUtf16le(utf8ToUtf16LeStringLiteral("foo"))});
try expectFmt("𐐷", "{}", .{fmtUtf16le(utf8ToUtf16LeStringLiteral("𐐷"))});
try expectFmt("퟿", "{}", .{fmtUtf16le(&[_]u16{std.mem.readInt(u16, "\xff\xd7", native_endian)})});
try expectFmt("�", "{}", .{fmtUtf16le(&[_]u16{std.mem.readInt(u16, "\x00\xd8", native_endian)})});
try expectFmt("�", "{}", .{fmtUtf16le(&[_]u16{std.mem.readInt(u16, "\xff\xdb", native_endian)})});
try expectFmt("�", "{}", .{fmtUtf16le(&[_]u16{std.mem.readInt(u16, "\x00\xdc", native_endian)})});
try expectFmt("�", "{}", .{fmtUtf16le(&[_]u16{std.mem.readInt(u16, "\xff\xdf", native_endian)})});
try expectFmt("", "{}", .{fmtUtf16le(&[_]u16{std.mem.readInt(u16, "\x00\xe0", native_endian)})});
test "fmtUtf16Le" {
const expectFmt = testing.expectFmt;
try expectFmt("", "{}", .{fmtUtf16Le(utf8ToUtf16LeStringLiteral(""))});
try expectFmt("foo", "{}", .{fmtUtf16Le(utf8ToUtf16LeStringLiteral("foo"))});
try expectFmt("𐐷", "{}", .{fmtUtf16Le(utf8ToUtf16LeStringLiteral("𐐷"))});
try expectFmt("퟿", "{}", .{fmtUtf16Le(&[_]u16{std.mem.readInt(u16, "\xff\xd7", native_endian)})});
try expectFmt("�", "{}", .{fmtUtf16Le(&[_]u16{std.mem.readInt(u16, "\x00\xd8", native_endian)})});
try expectFmt("�", "{}", .{fmtUtf16Le(&[_]u16{std.mem.readInt(u16, "\xff\xdb", native_endian)})});
try expectFmt("�", "{}", .{fmtUtf16Le(&[_]u16{std.mem.readInt(u16, "\x00\xdc", native_endian)})});
try expectFmt("�", "{}", .{fmtUtf16Le(&[_]u16{std.mem.readInt(u16, "\xff\xdf", native_endian)})});
try expectFmt("", "{}", .{fmtUtf16Le(&[_]u16{std.mem.readInt(u16, "\x00\xe0", native_endian)})});
}
 
test "utf8ToUtf16LeStringLiteral" {
@@ -1248,3 +1379,534 @@ test "utf8 valid codepoint" {
try testUtf8ValidCodepoint();
try comptime testUtf8ValidCodepoint();
}
 
/// Returns true if the codepoint is a surrogate (U+DC00 to U+DFFF)
pub fn isSurrogateCodepoint(c: u21) bool {
return switch (c) {
0xD800...0xDFFF => true,
else => false,
};
}
 
/// Encodes the given codepoint into a WTF-8 byte sequence.
/// c: the codepoint.
/// out: the out buffer to write to. Must have a len >= utf8CodepointSequenceLength(c).
/// Errors: if c cannot be encoded in WTF-8.
/// Returns: the number of bytes written to out.
pub fn wtf8Encode(c: u21, out: []u8) error{CodepointTooLarge}!u3 {
return utf8EncodeImpl(c, out, .can_encode_surrogate_half);
}
 
const Wtf8DecodeError = Utf8Decode2Error || Utf8Decode3AllowSurrogateHalfError || Utf8Decode4Error;
 
pub fn wtf8Decode(bytes: []const u8) Wtf8DecodeError!u21 {
return switch (bytes.len) {
1 => @as(u21, bytes[0]),
2 => utf8Decode2(bytes),
3 => utf8Decode3AllowSurrogateHalf(bytes),
4 => utf8Decode4(bytes),
else => unreachable,
};
}
 
/// Returns true if the input consists entirely of WTF-8 codepoints
/// (all the same restrictions as UTF-8, but allows surrogate codepoints
/// U+D800 to U+DFFF).
/// Does not check for well-formed WTF-8, meaning that this function
/// does not check that all surrogate halves are unpaired.
pub fn wtf8ValidateSlice(input: []const u8) bool {
return utf8ValidateSliceImpl(input, .can_encode_surrogate_half);
}
 
test "validate WTF-8 slice" {
try testValidateWtf8Slice();
try comptime testValidateWtf8Slice();
 
// We skip a variable (based on recommended vector size) chunks of
// ASCII characters. Let's make sure we're chunking correctly.
const str = [_]u8{'a'} ** 550 ++ "\xc0";
for (0..str.len - 3) |i| {
try testing.expect(!wtf8ValidateSlice(str[i..]));
}
}
fn testValidateWtf8Slice() !void {
// These are valid/invalid under both UTF-8 and WTF-8 rules.
try testing.expect(wtf8ValidateSlice("abc"));
try testing.expect(wtf8ValidateSlice("abc\xdf\xbf"));
try testing.expect(wtf8ValidateSlice(""));
try testing.expect(wtf8ValidateSlice("a"));
try testing.expect(wtf8ValidateSlice("abc"));
try testing.expect(wtf8ValidateSlice("Ж"));
try testing.expect(wtf8ValidateSlice("ЖЖ"));
try testing.expect(wtf8ValidateSlice("брэд-ЛГТМ"));
try testing.expect(wtf8ValidateSlice("☺☻☹"));
try testing.expect(wtf8ValidateSlice("a\u{fffdb}"));
try testing.expect(wtf8ValidateSlice("\xf4\x8f\xbf\xbf"));
try testing.expect(wtf8ValidateSlice("abc\xdf\xbf"));
 
try testing.expect(!wtf8ValidateSlice("abc\xc0"));
try testing.expect(!wtf8ValidateSlice("abc\xc0abc"));
try testing.expect(!wtf8ValidateSlice("aa\xe2"));
try testing.expect(!wtf8ValidateSlice("\x42\xfa"));
try testing.expect(!wtf8ValidateSlice("\x42\xfa\x43"));
try testing.expect(!wtf8ValidateSlice("abc\xc0"));
try testing.expect(!wtf8ValidateSlice("abc\xc0abc"));
try testing.expect(!wtf8ValidateSlice("\xf4\x90\x80\x80"));
try testing.expect(!wtf8ValidateSlice("\xf7\xbf\xbf\xbf"));
try testing.expect(!wtf8ValidateSlice("\xfb\xbf\xbf\xbf\xbf"));
try testing.expect(!wtf8ValidateSlice("\xc0\x80"));
 
// But surrogate codepoints are only valid in WTF-8.
try testing.expect(wtf8ValidateSlice("\xed\xa0\x80"));
try testing.expect(wtf8ValidateSlice("\xed\xbf\xbf"));
}
 
/// Wtf8View iterates the code points of a WTF-8 encoded string,
/// including surrogate halves.
///
/// ```
/// var wtf8 = (try std.unicode.Wtf8View.init("hi there")).iterator();
/// while (wtf8.nextCodepointSlice()) |codepoint| {
/// // note: codepoint could be a surrogate half which is invalid
/// // UTF-8, avoid printing or otherwise sending/emitting this directly
/// }
/// ```
pub const Wtf8View = struct {
bytes: []const u8,
 
pub fn init(s: []const u8) !Wtf8View {
if (!wtf8ValidateSlice(s)) {
return error.InvalidUtf8;
}
 
return initUnchecked(s);
}
 
pub fn initUnchecked(s: []const u8) Wtf8View {
return Wtf8View{ .bytes = s };
}
 
pub inline fn initComptime(comptime s: []const u8) Wtf8View {
return comptime if (init(s)) |r| r else |err| switch (err) {
error.InvalidUtf8 => {
@compileError("invalid utf8 detected in wtf8 string");
},
};
}
 
pub fn iterator(s: Wtf8View) Wtf8Iterator {
return Wtf8Iterator{
.bytes = s.bytes,
.i = 0,
};
}
};
 
/// Asserts that `bytes` is valid WTF-8
pub const Wtf8Iterator = struct {
bytes: []const u8,
i: usize,
 
pub fn nextCodepointSlice(it: *Wtf8Iterator) ?[]const u8 {
if (it.i >= it.bytes.len) {
return null;
}
 
const cp_len = utf8ByteSequenceLength(it.bytes[it.i]) catch unreachable;
it.i += cp_len;
return it.bytes[it.i - cp_len .. it.i];
}
 
pub fn nextCodepoint(it: *Wtf8Iterator) ?u21 {
const slice = it.nextCodepointSlice() orelse return null;
return wtf8Decode(slice) catch unreachable;
}
 
/// Look ahead at the next n codepoints without advancing the iterator.
/// If fewer than n codepoints are available, then return the remainder of the string.
pub fn peek(it: *Wtf8Iterator, n: usize) []const u8 {
const original_i = it.i;
defer it.i = original_i;
 
var end_ix = original_i;
var found: usize = 0;
while (found < n) : (found += 1) {
const next_codepoint = it.nextCodepointSlice() orelse return it.bytes[original_i..];
end_ix += next_codepoint.len;
}
 
return it.bytes[original_i..end_ix];
}
};
 
pub fn wtf16LeToWtf8ArrayList(array_list: *std.ArrayList(u8), utf16le: []const u16) !void {
return utf16LeToUtf8ArrayListImpl(array_list, utf16le, .can_encode_surrogate_half);
}
 
/// Caller must free returned memory.
pub fn wtf16LeToWtf8Alloc(allocator: mem.Allocator, wtf16le: []const u16) ![]u8 {
// optimistically guess that it will all be ascii.
var result = try std.ArrayList(u8).initCapacity(allocator, wtf16le.len);
errdefer result.deinit();
 
try wtf16LeToWtf8ArrayList(&result, wtf16le);
 
return result.toOwnedSlice();
}
 
/// Caller must free returned memory.
pub fn wtf16LeToWtf8AllocZ(allocator: mem.Allocator, wtf16le: []const u16) ![:0]u8 {
// optimistically guess that it will all be ascii (and allocate space for the null terminator)
var result = try std.ArrayList(u8).initCapacity(allocator, wtf16le.len + 1);
errdefer result.deinit();
 
try wtf16LeToWtf8ArrayList(&result, wtf16le);
 
return result.toOwnedSliceSentinel(0);
}
 
pub fn wtf16LeToWtf8(wtf8: []u8, wtf16le: []const u16) usize {
return utf16LeToUtf8Impl(wtf8, wtf16le, .can_encode_surrogate_half) catch |err| switch (err) {};
}
 
pub fn wtf8ToWtf16LeArrayList(array_list: *std.ArrayList(u16), wtf8: []const u8) !void {
return utf8ToUtf16LeArrayListImpl(array_list, wtf8, .can_encode_surrogate_half);
}
 
pub fn wtf8ToWtf16LeAlloc(allocator: mem.Allocator, wtf8: []const u8) ![]u16 {
// optimistically guess that it will not require surrogate pairs
var result = try std.ArrayList(u16).initCapacity(allocator, wtf8.len);
errdefer result.deinit();
 
try utf8ToUtf16LeArrayListImpl(&result, wtf8, .can_encode_surrogate_half);
 
return result.toOwnedSlice();
}
 
pub fn wtf8ToWtf16LeAllocZ(allocator: mem.Allocator, wtf8: []const u8) ![:0]u16 {
// optimistically guess that it will not require surrogate pairs
var result = try std.ArrayList(u16).initCapacity(allocator, wtf8.len + 1);
errdefer result.deinit();
 
try utf8ToUtf16LeArrayListImpl(&result, wtf8, .can_encode_surrogate_half);
 
return result.toOwnedSliceSentinel(0);
}
 
/// Returns index of next character. If exact fit, returned index equals output slice length.
/// Assumes there is enough space for the output.
pub fn wtf8ToWtf16Le(wtf16le: []u16, wtf8: []const u8) !usize {
return utf8ToUtf16LeImpl(wtf16le, wtf8, .can_encode_surrogate_half);
}
 
/// Surrogate codepoints (U+D800 to U+DFFF) are replaced by the Unicode replacement
/// character (U+FFFD).
/// All surrogate codepoints and the replacement character are encoded as three
/// bytes, meaning the input and output slices will always be the same length.
/// In-place conversion is supported when `utf8` and `wtf8` refer to the same slice.
/// Note: If `wtf8` is entirely composed of well-formed UTF-8, then no conversion is necessary.
/// `utf8ValidateSlice` can be used to check if lossy conversion is worthwhile.
pub fn wtf8ToUtf8Lossy(utf8: []u8, wtf8: []const u8) !void {
assert(utf8.len >= wtf8.len);
 
const in_place = utf8.ptr == wtf8.ptr;
const replacement_char_bytes = comptime blk: {
var buf: [3]u8 = undefined;
assert((utf8Encode(replacement_character, &buf) catch unreachable) == 3);
break :blk buf;
};
 
var dest_i: usize = 0;
const view = try Wtf8View.init(wtf8);
var it = view.iterator();
while (it.nextCodepointSlice()) |codepoint_slice| {
// All surrogate codepoints are encoded as 3 bytes
if (codepoint_slice.len == 3) {
const codepoint = wtf8Decode(codepoint_slice) catch unreachable;
if (isSurrogateCodepoint(codepoint)) {
@memcpy(utf8[dest_i..][0..replacement_char_bytes.len], &replacement_char_bytes);
dest_i += replacement_char_bytes.len;
continue;
}
}
if (!in_place) {
@memcpy(utf8[dest_i..][0..codepoint_slice.len], codepoint_slice);
}
dest_i += codepoint_slice.len;
}
}
 
pub fn wtf8ToUtf8LossyAlloc(allocator: mem.Allocator, wtf8: []const u8) ![]u8 {
const utf8 = try allocator.alloc(u8, wtf8.len);
errdefer allocator.free(utf8);
 
try wtf8ToUtf8Lossy(utf8, wtf8);
 
return utf8;
}
 
pub fn wtf8ToUtf8LossyAllocZ(allocator: mem.Allocator, wtf8: []const u8) ![:0]u8 {
const utf8 = try allocator.allocSentinel(u8, wtf8.len, 0);
errdefer allocator.free(utf8);
 
try wtf8ToUtf8Lossy(utf8, wtf8);
 
return utf8;
}
 
test wtf8ToUtf8Lossy {
var buf: [32]u8 = undefined;
 
const invalid_utf8 = "\xff";
try testing.expectError(error.InvalidWtf8, wtf8ToUtf8Lossy(&buf, invalid_utf8));
 
const ascii = "abcd";
try wtf8ToUtf8Lossy(&buf, ascii);
try testing.expectEqualStrings("abcd", buf[0..ascii.len]);
 
const high_surrogate_half = "ab\xed\xa0\xbdcd";
try wtf8ToUtf8Lossy(&buf, high_surrogate_half);
try testing.expectEqualStrings("ab\u{FFFD}cd", buf[0..high_surrogate_half.len]);
 
const low_surrogate_half = "ab\xed\xb2\xa9cd";
try wtf8ToUtf8Lossy(&buf, low_surrogate_half);
try testing.expectEqualStrings("ab\u{FFFD}cd", buf[0..low_surrogate_half.len]);
 
// If the WTF-8 is not well-formed, each surrogate half is converted into a separate
// replacement character instead of being interpreted as a surrogate pair.
const encoded_surrogate_pair = "ab\xed\xa0\xbd\xed\xb2\xa9cd";
try wtf8ToUtf8Lossy(&buf, encoded_surrogate_pair);
try testing.expectEqualStrings("ab\u{FFFD}\u{FFFD}cd", buf[0..encoded_surrogate_pair.len]);
 
// in place
@memcpy(buf[0..low_surrogate_half.len], low_surrogate_half);
const slice = buf[0..low_surrogate_half.len];
try wtf8ToUtf8Lossy(slice, slice);
try testing.expectEqualStrings("ab\u{FFFD}cd", slice);
}
 
test wtf8ToUtf8LossyAlloc {
const invalid_utf8 = "\xff";
try testing.expectError(error.InvalidWtf8, wtf8ToUtf8LossyAlloc(testing.allocator, invalid_utf8));
 
{
const ascii = "abcd";
const utf8 = try wtf8ToUtf8LossyAlloc(testing.allocator, ascii);
defer testing.allocator.free(utf8);
try testing.expectEqualStrings("abcd", utf8);
}
 
{
const surrogate_half = "ab\xed\xa0\xbdcd";
const utf8 = try wtf8ToUtf8LossyAlloc(testing.allocator, surrogate_half);
defer testing.allocator.free(utf8);
try testing.expectEqualStrings("ab\u{FFFD}cd", utf8);
}
 
{
// If the WTF-8 is not well-formed, each surrogate half is converted into a separate
// replacement character instead of being interpreted as a surrogate pair.
const encoded_surrogate_pair = "ab\xed\xa0\xbd\xed\xb2\xa9cd";
const utf8 = try wtf8ToUtf8LossyAlloc(testing.allocator, encoded_surrogate_pair);
defer testing.allocator.free(utf8);
try testing.expectEqualStrings("ab\u{FFFD}\u{FFFD}cd", utf8);
}
}
 
test wtf8ToUtf8LossyAllocZ {
const invalid_utf8 = "\xff";
try testing.expectError(error.InvalidWtf8, wtf8ToUtf8LossyAllocZ(testing.allocator, invalid_utf8));
 
{
const ascii = "abcd";
const utf8 = try wtf8ToUtf8LossyAllocZ(testing.allocator, ascii);
defer testing.allocator.free(utf8);
try testing.expectEqualStrings("abcd", utf8);
}
 
{
const surrogate_half = "ab\xed\xa0\xbdcd";
const utf8 = try wtf8ToUtf8LossyAllocZ(testing.allocator, surrogate_half);
defer testing.allocator.free(utf8);
try testing.expectEqualStrings("ab\u{FFFD}cd", utf8);
}
 
{
// If the WTF-8 is not well-formed, each surrogate half is converted into a separate
// replacement character instead of being interpreted as a surrogate pair.
const encoded_surrogate_pair = "ab\xed\xa0\xbd\xed\xb2\xa9cd";
const utf8 = try wtf8ToUtf8LossyAllocZ(testing.allocator, encoded_surrogate_pair);
defer testing.allocator.free(utf8);
try testing.expectEqualStrings("ab\u{FFFD}\u{FFFD}cd", utf8);
}
}
 
pub const Wtf16LeIterator = struct {
bytes: []const u8,
i: usize,
 
pub fn init(s: []const u16) Wtf16LeIterator {
return Wtf16LeIterator{
.bytes = std.mem.sliceAsBytes(s),
.i = 0,
};
}
 
/// If the next codepoint is encoded by a surrogate pair, returns the
/// codepoint that the surrogate pair represents.
/// If the next codepoint is an unpaired surrogate, returns the codepoint
/// of the unpaired surrogate.
pub fn nextCodepoint(it: *Wtf16LeIterator) ?u21 {
assert(it.i <= it.bytes.len);
if (it.i == it.bytes.len) return null;
var code_units: [2]u16 = undefined;
code_units[0] = std.mem.readInt(u16, it.bytes[it.i..][0..2], .little);
it.i += 2;
surrogate_pair: {
if (utf16IsHighSurrogate(code_units[0])) {
if (it.i >= it.bytes.len) break :surrogate_pair;
code_units[1] = std.mem.readInt(u16, it.bytes[it.i..][0..2], .little);
const codepoint = utf16DecodeSurrogatePair(&code_units) catch break :surrogate_pair;
it.i += 2;
return codepoint;
}
}
return code_units[0];
}
};
 
test "non-well-formed WTF-8 does not roundtrip" {
// This encodes the surrogate pair U+D83D U+DCA9.
// The well-formed version of this would be U+1F4A9 which is \xF0\x9F\x92\xA9.
const non_well_formed_wtf8 = "\xed\xa0\xbd\xed\xb2\xa9";
 
var wtf16_buf: [2]u16 = undefined;
const wtf16_len = try wtf8ToWtf16Le(&wtf16_buf, non_well_formed_wtf8);
const wtf16 = wtf16_buf[0..wtf16_len];
 
try testing.expectEqualSlices(u16, &[_]u16{
mem.nativeToLittle(u16, 0xD83D), // high surrogate
mem.nativeToLittle(u16, 0xDCA9), // low surrogate
}, wtf16);
 
var wtf8_buf: [4]u8 = undefined;
const wtf8_len = wtf16LeToWtf8(&wtf8_buf, wtf16);
const wtf8 = wtf8_buf[0..wtf8_len];
 
// Converting to WTF-16 and back results in well-formed WTF-8,
// but it does not match the input WTF-8
try testing.expectEqualSlices(u8, "\xf0\x9f\x92\xa9", wtf8);
}
 
fn testRoundtripWtf8(wtf8: []const u8) !void {
// Buffer
{
var wtf16_buf: [32]u16 = undefined;
const wtf16_len = try wtf8ToWtf16Le(&wtf16_buf, wtf8);
const wtf16 = wtf16_buf[0..wtf16_len];
 
var roundtripped_buf: [32]u8 = undefined;
const roundtripped_len = wtf16LeToWtf8(&roundtripped_buf, wtf16);
const roundtripped = roundtripped_buf[0..roundtripped_len];
 
try testing.expectEqualSlices(u8, wtf8, roundtripped);
}
// Alloc
{
const wtf16 = try wtf8ToWtf16LeAlloc(testing.allocator, wtf8);
defer testing.allocator.free(wtf16);
 
const roundtripped = try wtf16LeToWtf8Alloc(testing.allocator, wtf16);
defer testing.allocator.free(roundtripped);
 
try testing.expectEqualSlices(u8, wtf8, roundtripped);
}
// AllocZ
{
const wtf16 = try wtf8ToWtf16LeAllocZ(testing.allocator, wtf8);
defer testing.allocator.free(wtf16);
 
const roundtripped = try wtf16LeToWtf8AllocZ(testing.allocator, wtf16);
defer testing.allocator.free(roundtripped);
 
try testing.expectEqualSlices(u8, wtf8, roundtripped);
}
}
 
test "well-formed WTF-8 roundtrips" {
try testRoundtripWtf8("\xed\x9f\xbf"); // not a surrogate half
try testRoundtripWtf8("\xed\xa0\xbd"); // high surrogate
try testRoundtripWtf8("\xed\xb2\xa9"); // low surrogate
try testRoundtripWtf8("\xed\xa0\xbd \xed\xb2\xa9"); // <high surrogate><space><low surrogate>
try testRoundtripWtf8("\xed\xa0\x80\xed\xaf\xbf"); // <high surrogate><high surrogate>
try testRoundtripWtf8("\xed\xa0\x80\xee\x80\x80"); // <high surrogate><not surrogate>
try testRoundtripWtf8("\xed\x9f\xbf\xed\xb0\x80"); // <not surrogate><low surrogate>
try testRoundtripWtf8("a\xed\xb0\x80"); // <not surrogate><low surrogate>
try testRoundtripWtf8("\xf0\x9f\x92\xa9"); // U+1F4A9, encoded as a surrogate pair in WTF-16
}
 
fn testRoundtripWtf16(wtf16le: []const u16) !void {
// Buffer
{
var wtf8_buf: [32]u8 = undefined;
const wtf8_len = wtf16LeToWtf8(&wtf8_buf, wtf16le);
const wtf8 = wtf8_buf[0..wtf8_len];
 
var roundtripped_buf: [32]u16 = undefined;
const roundtripped_len = try wtf8ToWtf16Le(&roundtripped_buf, wtf8);
const roundtripped = roundtripped_buf[0..roundtripped_len];
 
try testing.expectEqualSlices(u16, wtf16le, roundtripped);
}
// Alloc
{
const wtf8 = try wtf16LeToWtf8Alloc(testing.allocator, wtf16le);
defer testing.allocator.free(wtf8);
 
const roundtripped = try wtf8ToWtf16LeAlloc(testing.allocator, wtf8);
defer testing.allocator.free(roundtripped);
 
try testing.expectEqualSlices(u16, wtf16le, roundtripped);
}
// AllocZ
{
const wtf8 = try wtf16LeToWtf8AllocZ(testing.allocator, wtf16le);
defer testing.allocator.free(wtf8);
 
const roundtripped = try wtf8ToWtf16LeAllocZ(testing.allocator, wtf8);
defer testing.allocator.free(roundtripped);
 
try testing.expectEqualSlices(u16, wtf16le, roundtripped);
}
}
 
test "well-formed WTF-16 roundtrips" {
try testRoundtripWtf16(&[_]u16{
std.mem.nativeToLittle(u16, 0xD83D), // high surrogate
std.mem.nativeToLittle(u16, 0xDCA9), // low surrogate
});
try testRoundtripWtf16(&[_]u16{
std.mem.nativeToLittle(u16, 0xD83D), // high surrogate
std.mem.nativeToLittle(u16, ' '), // not surrogate
std.mem.nativeToLittle(u16, 0xDCA9), // low surrogate
});
try testRoundtripWtf16(&[_]u16{
std.mem.nativeToLittle(u16, 0xD800), // high surrogate
std.mem.nativeToLittle(u16, 0xDBFF), // high surrogate
});
try testRoundtripWtf16(&[_]u16{
std.mem.nativeToLittle(u16, 0xD800), // high surrogate
std.mem.nativeToLittle(u16, 0xE000), // not surrogate
});
try testRoundtripWtf16(&[_]u16{
std.mem.nativeToLittle(u16, 0xD7FF), // not surrogate
std.mem.nativeToLittle(u16, 0xDC00), // low surrogate
});
try testRoundtripWtf16(&[_]u16{
std.mem.nativeToLittle(u16, 0x61), // not surrogate
std.mem.nativeToLittle(u16, 0xDC00), // low surrogate
});
try testRoundtripWtf16(&[_]u16{
std.mem.nativeToLittle(u16, 0xDC00), // low surrogate
});
}